Ambry: LinkedIn’s Scalable Geo-Distributed Object Store

Shadi A. Noghabi!, Sriram Subramanian?, Priyesh Narayanan?
Sivabalan Narayanan?, Gopalakrishna Holla?, Mammad Zadeh?, Tianwei Li?
Indranil Gupta®, Roy H. Campbell*

'University of lllinois at Urbana-Champaign, LinkedIn Corp.

{abdolla2, indy, rhc}@illinois.edu
{srsubramanian, pnarayanan, snarayanan, gholla, mzadeh, tili}@linkedin.com

ABSTRACT

The infrastructure beneath a worldwide social network has
to continually serve billions of variable-sized media objects
such as photos, videos, and audio clips. These objects must
be stored and served with low latency and high through-
put by a system that is geo-distributed, highly scalable,
and load-balanced. Existing file systems and object stores
face several challenges when serving such large objects. We
present Ambry, a production-quality system for storing large
immutable data (called blobs). Ambry is designed in a
decentralized way and leverages techniques such as logical
blob grouping, asynchronous replication, rebalancing mech-
anisms, zero-cost failure detection, and OS caching. Am-
bry has been running in LinkedIn’s production environment
for the past 2 years, serving up to 10K requests per second
across more than 400 million users. Our experimental eval-
uation reveals that Ambry offers high efficiency (utilizing up
to 88% of the network bandwidth), low latency (less than
50 ms latency for a 1 MB object), and load balancing (im-
proving imbalance of request rate among disks by 8x-10x).

Keywords

Object Store, Geographically Distributed, Scalable, Load
Balancing

1. INTRODUCTION

During the past decade, social networks have become pop-
ular communication channels worldwide. Hundreds of mil-
lions of users continually upload and view billions of diverse
massive media objects, from photos and videos to docu-
ments. These large media objects, called blobs, are up-
loaded once, frequently accessed from all around the world,
never modified, and rarely deleted. LinkedIn, as a global
large-scale social network company, has faced the need for a
geographically distributed system that stores and retrieves
these read-heavy blobs in an efficient and scalable manner.

Handling blobs poses a number of unique challenges. First,
due to diversity in media types, blob sizes vary significantly
from tens of KBs (e.g., profile pictures) to a few GBs (e.g.,
videos). The system needs to store both massive blobs and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3531-7/16/06. .. $15.00

DOIL: http://dx.doi.org/10.1145/2882903.2903738

a large number of small blobs efficiently. Second, there is
an ever-growing number of blobs that need to be stored and
served. Currently, LinkedIn serves more than 800 million
put and get operations per day (over 120 TB in size). In
the past 12 months, the request rate has almost doubled,
from 5k requests/s to 9.5k requests/s. This rapid growth in
requests magnifies the necessity for a linearly scalable sys-
tem (with low overhead). Third, the variability in workload
and cluster expansions can create unbalanced load, degrad-
ing the latency and throughput of the system. This creates
a need for load-balancing. Finally, users expect the upload-
ing process to be fast, durable, and highly available. When
a user uploads a blob, all his/her friends from all around the
globe should be able to see the blob with very low latency,
even if parts of the internal infrastructure fail. To provide
these properties, data has to be reliably replicated across the
globe in multiple datacenters, while maintaining low latency
for each request.

LinkedIn had its own home-grown solution called Media
Server, built using network attached storage filers (for file
storage), Oracle database (for metadata), and Solaris boxes.
Media Server had multiple drawbacks. It faced CPU and 10
spikes caused by numerous metadata operations for small
objects, was not horizontally scalable, and was very expen-
sive. Given that LinkedIn was scaling rapidly and the future
web content will be largely dominated by media, we needed
to find a replacement.

Several systems have been designed for handling a large
amount of data, but none of them satisfactorily meet the re-
quirements and scale LinkedIn needs. There has been exten-
sive research into distributed file systems [10, 16, 22, 24, 28].
These systems have a number of limitations when used for
storing blobs, as pointed out by [3,11]. For instance, the
hierarchical directory structure and rich metadata are an
overkill for a blob store and impose unnecessary additional
overhead.

Many key value stores [2,5,8,14] have also been designed
for storing a large number of objects. Although these sys-
tems can handle many small objects, they are not optimized
for storing large objects (tens of MBs to GBs). Further,
they impose extra overhead for providing consistency guar-
antees while these are typically not needed for immutable
data. Some examples of these overheads include using vec-
tor clocks, conflict resolution mechanism, logging, and cen-
tral coordinators.

A few systems have been designed specifically for large
immutable objects including Facebook’s Haystack [3] along
with f4 [18] and Twitter’s Blob Store [27]. However, these
systems do not resolve load imbalance, especially when clus-
ter expansions occur.

In this paper we present Ambry, a production-quality sys-
tem designed specifically for diverse large and small im-

mutable data with read-heavy traffic, where data is written
once, and read many times (>95% read traffic). Ambry is
designed with four main goals in mind:

1) Low Latency and High Throughput: The system
needs to serve a large number of requests per second in a
timely fashion, while working on cheap commodity hard-
ware (e.g., HDDs). In order to reach this goal, Ambry uti-
lizes a number of techniques including exploiting the OS
cache, using zero copy when reading data from disk to net-
work, chunking data along with retrieving/storing chunks in
parallel from multiple nodes, providing configurable polices
for the number of replicas to write and read, and zero-cost
failure detection mechanisms (Sections 2.3, 4.2, and 4.3).
2) Geo-Distributed Operation: Blobs have to be repli-
cated in other geographically distributed datacenters for high
durability and availability, even in the presence of failures.
To achieve low latency and high throughput in this geo-
distributed setting, Ambry is designed as a decentralized
multi-master system where data can be written to or read
from any of the replicas. Additionally, it uses asynchronous
writes that write data to the closest datacenter and asyn-
chronously replicate to other datacenter(s). Also, for higher
availability, it uses proxy requests that forward requests to
other datacenters when the data is not replicated in the cur-
rent datacenter yet (Sections 2.3 and 4.2).

3) Scalability: With the ever-growing amount of data, the
system has to scale out efficiently with low overhead. To
achieve this goal, Ambry makes three main design choices.
First, Ambry separates the logical placement of blobs from
their physical placement, allowing it to change the physical
placement transparently from the logical placement. Sec-
ond, Ambry is designed as a completely decentralized sys-
tem, with no manager/master. Third, Ambry uses on-disk
segmented indexing along with Bloom filters and an in-
memory cache of the latest segment, allowing for scalable
and efficient indexing of blobs. (Section 4.3).

4) Load Balancing: The system has to stay balanced in
spite of growth. Ambry uses chunking of large blobs along
with a random selection approach to remain balanced in a
static cluster, and a re-balancing mechanism to return to a
balanced state whenever cluster expansion occurs (Section
3).
Ambry has successfully been in production for the last 24
months, across four datacenters, serving more than 400 mil-
lion users. Our experimental results show that Ambry reach-
es high throughput (reaching up to 88% of the network band-
width) and low latency (serving 1 MB blobs in less than 50
ms), works efficiently across multiple geo-distributed data-
centers, and improves the imbalance among disks by a factor
of 8x-10x while moving minimal data.

2. SYSTEM OVERVIEW

In this section we discuss the overall design of Ambry in-
cluding the high-level architecture of the system (Section
2.1), the notion of partition (Section 2.2), and supported
operations (Section 2.3).

2.1 Architecture

Ambry is designed as a completely decentralized multi-
tenant system across geographically distributed data cen-
ters. The overall architecture of Ambry is shown in Fig-
ure 1. The system is composed of three main components:
Frontends that receive and route requests, Datanodes that
store the actual data, and Cluster Managers that maintain
the state of the cluster. Each datacenter owns and runs its
own set of these components in a decentralized fashion. The
Frontends and Datanodes are completely independent of one
another, and the Cluster Managers are synchronized using

o =
5 5
o &n
& &
g g
s s
o =
g g
7] 7]
= =
]]

Figure 1: Architecture of Ambry.

blob blob user blob
t blob
e id properties | metadata | content —putblo
0 \\\‘~\\ ’,»"/ size
blob blob blob
entry entry entry
header bigb delete flag (¢—delete blob

Figure 2: Partition and Blob layout.

Zookeeper [12]. We provide an overview of each component
below (details in Section 4).

Cluster Manager: Ambry organizes its data in virtual
units called partitions (Section 2.2). A partition is a logical
grouping of a number of blobs, implemented as a large repli-
cated file. On creation, partitions are read-write, i.e., im-
mutable blobs are read and new blobs can be added. When a
logical partition reaches its capacity, it turns read-only. The
Cluster Manager keeps track of the state (read-write/read-
only) and location of each partition replica, along with the
physical layout of the cluster (nodes and disk placement).

Frontend: The Frontends are in charge of receiving and
routing requests in a multi-tenant environment. The sys-
tem serves three request types: put, get, and delete. Popu-
lar data is handled by a Content Delivery Network (CDN)
layer above Ambry. Frontends receive requests directly from
clients or through the CDN (if the data is cached). The
Frontends forward a request to the corresponding Datan-
ode(s) and return the response to the client/CDN originat-
ing the request.

Datanode: Datanodes store and retrieve the actual data.
Each Datanode manages a number of disks. For better per-
formance, Datanodes maintain a number of additional data
structures including: indexing of blobs, journals and Bloom
filters (Section 4.3).

2.2 Partition

Instead of directly mapping blobs to physical machines,
e.g., Chord [26] and CRUSH [29], Ambry randomly groups
blobs together into virtual units called partitions. The phys-
ical placement of partitions on machines is done in a separate
procedure. This decoupling of the logical and physical place-
ment enables transparent data movement (necessary for re-
balancing) and avoids immediate rehashing of data during
cluster expansion.

A partition is implemented as an append-only log in a pre-
allocated large file. Currently, partitions are fixed-size dur-
ing the life-time of the system !. The partition size should
be large enough that the overhead of partitions, i.e., the
additional data structures maintained per partition such as
indexing, journals, and Bloom filters (Section 4.3), are neg-
ligible. On the other hand, the failure recovery and rebuild
time should be small. We use 100 GB partitions in our
clusters. Since rebuilding is done in parallel from multiple
replicas, we found that even 100 GB partitions can be rebuilt
in a few minutes.

Blobs are sequentially written to partitions as put and
delete entries (Figure 2). Both entries contain a header
(storing the offsets of fields in the entry) and a blob id. The
blob id is a unique identifier, generated by the Frontend
during a put operation, and used during get/delete opera-
tions for locating the blob. This id consists of the partition
id in which the blob is placed (8 Bytes), followed by a 32
Byte universally unique id (UUID) for the blob. Collisions
in blob ids are possible, but very unlikely (the probability is
< 27320)_ For a collision to occur, two put operations have
to generate equal UUIDs and chose similar partitions for the
blob. Collisions are handled at the Datanodes by failing the
late put request.

Put entries also include predefined properties including:
blob size, time-to-live, creation time, and content type. Also,
there is an optional map of user defined properties followed
by the blob.

In order to offer high availability and fault-tolerance, each
partition is replicated on multiple Datanodes. For replica
placement, Ambry uses a greedy approach based on disk
spaces. This algorithm chooses the disk with the most un-
allocated space while ensuring constraints such as: 1) not
having more than one replica per Datanode and 2) having
replicas in multiple data centers. Currently, the number of
replicas per partition is configurable by the system adminis-
trator. As part of future work, we plan to adaptively change
the number of replicas based on the popularity of the par-
tition, and use erasure coding for cold data to even further
reduce the replication factor.

On creation, partitions are read-write, serving all opera-
tions (put, get and delete). When the partition hits its upper
threshold on size (capacity threshold) it becomes read-only,
thereafter serving only get and delete operations.

The capacity threshold should be slightly less than the
max capacity (80-90%) of the partition for two reasons.
First, after becoming read-only, replicas might not be com-
pletely in-sync and need free space to catch-up later (be-
cause of asynchronous writes). Second, delete requests still
append delete entries.

Deletes are similar to put operations, but on an exist-
ing blob. By default, deletes result in appending a delete
entry (with the delete flag set) for the blob (soft delete).
Deleted blobs are periodically cleaned up using an in-place
compaction mechanism. After compaction, read-only parti-
tions can become read-write if enough space is freed-up. In
the rest of the paper we mainly focus on puts, due to the
similarity of delete and put operations.

2.3 Operations

Ambry has a lightweight API supporting only 3 opera-
tions: put, get, and delete. The request handling proce-
dure is shown in Figure 3. On receiving a request, the
Frontend optionally conducts some security checks on the
request. Then, using the Router Library (that contains the
core logic of operation handling) it chooses a partition, com-

1As part of future work we plan to investigate potential
improvements by using variable-size partitions.

| Client |

5 1
Frontend -
Router Library 2: Choose
3 3 3
4 4 4
Data node i Data node j Data node &

—— —— o — o ——
o o o
= = =

Figure 3: Steps in processing an operation.

municates with the Datanode(s) in charge, and serves the
request. In the put operation, the partition is chosen ran-
domly (for data balancing purposes), and in the get/delete
operation the partition is extracted from the blob id.

Operations are handled in a multi-master design where
operations can be served by any of the replicas. The de-
cision of how many replicas to contact is based on user-
defined policies. These policies are similar to consistency
levels in Cassandra [14], where they control how many (one,
k, majority, all) replicas to involve in an operation. For
puts (or deletes), the request is forwarded to all replicas,
and policies define the number of acknowledgments needed
for a success (trade-off between durability and latency). For
gets, policies determine how many randomly selected repli-
cas to contact for the operation (trade-off between resources
usage and latency). In practice, we found that for all opera-
tions the k = 2 replica policy gives us the balance we desire.
Stricter polices (involving more replicas) can be used to pro-
vide stronger consistency guarantees.

Additionally, performing write operations to all replicas
placed in multiple geo-distributed datacenters in a synchron-
ous fashion can affect the latency and throughput. In or-
der to alleviate this issue, Ambry uses asynchronous writes
where puts are performed synchronously only in the local
datacenter, i.e., the datacenter in which the Frontend re-
ceiving the request is located. The request is counted as
successfully finished at this point. Later on, the blob is
replicated to other datacenters using a lightweight replica-
tion algorithm (Section 5).

In order to provide read-after-write consistency in a data-
center which a blob has not been replicated yet (e.g., writing
to one datacenter and reading from another), Ambry uses
proxy requests. If the Frontend cannot retrieve a blob from
its local datacenter, it proxies the request to another data-
center and returns the result from there. Although a proxy
request is expensive, in practice we found that proxy re-
quests happen infrequently (less than 0.001 % of the time).

3. LOAD BALANCING

Skewed workloads, massively large blobs, and cluster ex-
pansions create load imbalance and impact the throughput
and latency of the system. Ambry achieves load balancing
(in terms of disk usage and request rates) in both static and
dynamic (scale-out) clusters.

Static Cluster: Splitting large blobs into multiple small
chunks (Section 4.2.1) as well as routing put operations to
random partitions, achieves balance in partition sizes. Addi-
tionally, using fairly large partition sizes along with relying
on CDNs to handle very popular data significantly decrease
the likelihood of hot partitions. Using these techniques the

load imbalance of request rates and partition sizes in pro-
duction gets to as low as 5% amongst Datanodes.

Dynamic Cluster: In practice, read-write partitions re-
ceive all the write traffic and also the majority of the read
traffic (due to popularity). Since partitions grow in a semi-
balanced manner, the number of read-write partitions be-
comes the main factor of load imbalance. After cluster ex-
pansion, new Datanodes contain only read-write partitions,
while older Datanodes contain mostly read-only partitions.
This skewed distribution of read-write partitions creates a
large imbalance in the system. In our initial version, the av-
erage request rates of new Datanodes were up to 100x higher
than old Datanodes and 10x higher than the average-aged
ones.

To alleviate this issue, Ambry employs a rebalancing mech-
anism that returns the cluster to a semi-balanced state (in
terms of disk usage and request rate) with minimal data
movement. The rebalancing approach reduces request rate
and disk usage imbalance by 6-10x and 9-10x respectively.

Ambry defines the ideal (load balanced) state as a triplet
(idealRW, idealRO, idealUsed) representing the ideal num-
ber of read-write partitions, ideal number of read-only parti-
tions and ideal disk usage each disk should have. This ideal
state (idealRW, idealRO, idealUsed) is computed by divid-
ing the total number of read-write/read-only partitions and
total used disk space by the number of disks in the cluster,
respectively. A disk is considered above (or below) ideal if
it has more (or less) read-write/read-only partitions or disk
usage than the ideal state.

The rebalancing algorithm attempts to reach this ideal
state. This is done by moving partitions from disks above
ideal to disks below ideal using a 2 phase approach, as shown
in the pseudo-code below.

Algorithm 1 Rebalancing Algorithm

: // Compute ideal state.

: idealRW=totalNumRW / numDisks
: idealRO=totalNumRO / numDisks
: idealUsed=totalUsed / numDisks

o Sl el

5: // Phasel: move extra partitions into a partition pool.
6: partitionPool = {}

7: for each disk d do

8: // Move extra read-write partitions.

9: while d. NumRW > idealRW do

10: partitionPool += chooseMinimumU sed RW (d)
11: // Move extra read-only partitions.

12: while d. NumRO > idealRO & d.used > idealUsed do
13: partitionPool += chooseRandomRO(d)

14: // Phase2: Move partitions to disks needing partitions.
15: placePartitions(read-write)
16: placePartitions(read-only)

17: function PLACEPARTITIONS(Type t)

18: while partition Pool contains partitions type ¢ do
19: D=shuffleDisksBelowIdeal()

20: for disk d in D and partition p in pool do
21: d.addPartition(p)

22: partitionPool.remove(p)

Phasel - Move to Partition Pool: In this phase, Am-
bry moves partitions from disks above ideal into a pool,
called partitionPool (Lines 6-13). At the end of this phase
no disk should remain above ideal, unless removing any par-
tition would cause it to fall below ideal.

Ambry starts from read-write partitions (which are the
main factor), and moves extra ones solely based on idealRW
threshold. The same process is repeated for read-only par-

Datacenter | Datanode Disk Size | Status
disk 1 4 TB UP
DC1 Datanode 1 di;k k 4 TB UpP
disk 1 4TB | DOWN
DC1 Datanode 2
disk ¥/ | 4 TB UP
disk 1 1 TB | DOWN
DCn Datanode j
disk k'’ 1TB UpP

Table 1: Hardware layout in Cluster Manager.

titions, but with considering both idealRO and idealUsed
when moving partitions. The strategy of choosing which
partition to move is based on minimizing data movement.
For read-write partitions, the one with the minimum used
capacity is chosen, while for read-only partitions, a random
one is chosen since all such partitions are full.

Phase2 - Place Partitions on Disks: In this phase,
Ambry places partitions from the partition pool on disks
below ideal (Lines 14-16), starting from read-write parti-
tions and then read-only ones. Partitions are placed using
a random round-robin approach (Line 17-22). Ambry finds
all disks below ideal, shuffles them, and assigns partitions to
them in a round-robin fashion. This procedure is repeated
until the pool becomes empty.

After finding the the new placement, replicas are seam-
lessly moved by: 1) creating a new replica in the destination,
2) syncing the new replica with old ones using the replica-
tion protocol while serving new writes in all replicas, and 3)
deleting the old replica after syncing.

4. COMPONENTS IN DETAIL

In this section we further discuss the main components of
Ambry. We describe the detailed state stored by the Cluster
Manager (Section 4.1), extra responsibilities of Frontends
including chunking and failure detection (Section 4.2), and
additional structures maintained by the Datanodes (Section
4.3).

4.1 Cluster Manager

The Cluster Manager is in charge of maintaining the state
of the cluster. Each datacenter has its local Cluster Manager
instance(s) kept in-sync with others using Zookeeper. The
state stored by the Cluster Manager is very small (less than
a few MBs in total), consisting of a hardware and logical
layout.

4.1.1 Hardware Layout

The hardware layout includes information about the phys-
ical structure of the cluster, i.e., the arrangement of data-
centers, Datanodes, and disks. It also maintains the raw
capacity and status, i.e., healthy (UP) or failed (DOWN),
for each disk. An example hardware layout is shown in Table
1. As shown, Ambry works in a heterogeneous environment
with different hardware and configuration used inside and
across different datacenters.

4.1.2 Logical Layout

The logical layout maintains the physical location of par-
tition replicas, and the state (read-only/read-write) of each
partition. In order to find the state of a partition, the Clus-
ter Manager periodically contacts the Datanodes, and re-
quests the state of their partitions. This layout is used for
choosing a partition to write a new blob to (put operation),
and locating the Datanode in charge of a given replica (all

Partition id State Placement
DC 1: Datanode 1: disk 1
partition 1 read-write DC 1: Datanode 4: disk 5
DC 3: Datanode 7: disk 2
DC 1: Datanode 1: disk 1
partition p read-only
DC 4: Datanode 5: disk 2

Table 2: Logical Layout in Cluster Manager.

operations). An example of this layout is shown in Table 2.
As shown, replicas of a partition can be placed on multiple
Datanodes in one datacenter, and/or in different datacen-
ters. Additionally, one disk (e.g., DC 1: Datanode 1: disk
1) can contain replicas of distinct partitions, where some are
read-only and some are read-write. Partitions are added by
updating the logical layout stored in the Cluster Manager
instances?.

4.2 Frontend Layer

The Frontend is the entry point to Ambry for external re-
quests. Each datacenter has its own set of Frontends. Fron-
tends are decentralized involving no master or coordination,
identically performing the same task, and stateless with all
state stored in the Cluster Manager (which is periodically
pulled). This design enhances scalability (new Frontends
can be added without much performance penalty), fault-
tolerance (requests can be forwarded to any Frontend), and
failure recovery (failed Frontends can quickly be replaced)
for Frontends. Frontends have three main responsibilities:

1. Request Handling: This involves receiving requests,
routing them to the corresponding Datanode(s) using
the Router Library (Section 4.2.1), and sending back
the response.

2. Security Checks: Optionally performing security checks,
such as virus scanning and authentication on requests.

3. Capturing Operations: Pushing events to a change
capture system out of Ambry for further offline analy-
sis, such as finding request patterns of the system. We
use Kafka [13] as our change-capture system due to the
high durability, high throughput, and low overhead it
provides.

4.2.1 Router Library

The Router Library contains all the core logic of han-
dling requests and communicating with Datanodes. Fron-
tends simply embed and use this library. Clients can bypass
Frontends by embedding this library and directly serving
requests. This library includes four main procedures: 1)
policy-based routing, 2) chunking large blobs, 3) failure de-
tection, and 4) proxy requests.

Policy Based Routing: On receiving a request, the library
decides which partition to involve (randomly chosen for puts
and extracted from blob id for gets/deletes). Then, based on
the policy used ({one, k, majority, all} discussed in Section
2.3), it communicates with the corresponding replica(s) until
the request is served/failed.

Chunking: Extremely large blobs (e.g., videos) create load
imbalance, block smaller blobs, and inherently have high

2Currently, the system administrator manually adds par-
titions in order to prevent unwanted and rapid cluster
growths. However, this can easily be automated.

ChunkId/ ChunkIdk

Chunks

partitionld | UUID partitionld | UUID

Figure 4: Content of the metadata blob used for
chunked blobs.

1 1 1 1
} | 1 I
l—>! —! !

ﬁﬁ :waitperiod: ﬁ :waitperiod: /\ :/\/\
1] I 1 1

1
1
1

1] temp | | temp

available : temp down : available : temp down : available ! gvailable

v

Figure 5: Failure detection algorithm with maxi-
mum tolerance of 2 consecutive failed responses.

latency. To mitigate these issues, Ambry splits large blobs
into smaller equal-size units called chunks. A large chunk
size does not fully resolve the large blob challenges and a
small chunk size adds too much overhead. Based on our
current large blob size distribution, we found the sweet spot
for the chunk size to be in the range of 4 to 8 MB®.

During a put operation, a blob b is split into £ chunks
{c1,¢2,...,ck}, each treated as an independent blob. Each
chunk goes through the same steps as a normal put blob op-
eration (Section 2.3), most likely being placed on a different
partition. It is also assigned a unique chunk id with the same
format as a blob id. In order to be able to retrieve b Am-
bry creates a metadata blob byetadata fOr b. bimetadata StOTEs
the number of chunks and chunk ids in order, as shown in
Figure 4. This metadata blob is then put into Ambry as a
normal blob and the blob id of byetadata 1S returned to the
user as the blob id of b. If the put fails before writing all
chunks, the system will issue deletes for written chunks and
the operation has to be redone.

During a get, the metadata blob is retrieved and chunk ids
are extracted from it. Then, Ambry uses a sliding buffer of
size s to retrieve the blob. Ambry queries the first s chunks
of the blob independently and in parallel (since they are
most likely written on unique partitions placed on separate
Datanodes). When the first chunk in the buffer is retrieved,
Ambry slides the buffer to the next chunk, and so on. The
whole blob starts being returned to the user the moment the
first chunk of the blob is retrieved.

Although an extra put/get is needed in this chunking
mechanism (for the metadata blob), overall, our approach
improves latency since multiple chunks are written and re-
trieved in parallel.

Zero-cost Failure Detection: Failures happen frequently
in a large system. They range from unresponsiveness and
connection timeouts, to disk I/O problems. Thus, Am-
bry needs a failure detection mechanism to discover un-
available Datanodes/disks and avoid forwarding requests to
them.

Ambry employs a zero-cost failure detection mechanism
involving no extra messages, such as heartbeats and pings,
by leveraging request messages. In practice, we found our
failure detection mechanism is effective, simple, and con-
sumes very little bandwidth. This mechanism is shown in
Figure 5. In this approach, Ambry keeps track of the num-
ber of consecutive failed requests for a particular Datanode
(or disk) in the last check_period of time. If this number ex-
ceeds a MAX_FAIL threshold (in our example set to 2) the

3Chunk size is not fixed and can be adapted to follow the
growth in blob sizes, improvements in network, etc.

Datanode is marked as temporarily_down for a wait_period
of time. In this state all queued requests for this Datanode
will eventually time out and need to be reattempted by the
user. After the wait_period has passed, the Datanode be-
comes temporarily_available. When a Datanode is in the
temporarily_available phase, if the next request sent to that
Datanode fails, it will move to the temporarily_down phase
again. Otherwise, it will be marked as available, working as
normal again.

Proxy Requests: As described in Section 2.3, Ambry uses
proxy requests to reach higher availability and read-after-
write consistency in remote datacenters. When a blob has
not been replicated in the local datacenter yet, requests for
that blob are forwarded to other datacenters and served
there (proxy requests). However, datacenter partitions can
cause unavailability of unreplicated data until the partition
is healed and replicas converge.

Proxy requests are handled by the Router Library, trans-
parently from the user issuing the request. In practice, we
found proxy requests occur less than 0.001% of the time,
thus minimally affecting the user experience.

4.3 Datanode Layer

Datanodes are in charge of maintaining the actual data.
Each Datanode manages a number of disks, and responds to
requests for partition replicas placed on its disks. Puts are
handled by writing to the end of the partition file. Gets can
be more time-consuming, especially since the location of the
blob in the partition is not known. To minimize both read
and write latencies, Datanodes employ a few techniques:

e Indexing blobs: Ambry stores an index of blob off-
sets per partition replica to prevent sequential sweeps
for finding blobs (Section 4.3.1).

e Exploiting OS cache: Ambry utilizes OS caching to
serve most reads from the RAM, by limiting the RAM
usage of other components (Section 4.3.2).

e Batched writes, with a single disk seek: Am-
bry batches writes for a particular partition together
and periodically flushes the writes to disk. Thus, it
incurs at most one disk seek for a batch of sequential
writes. The flush period is configurable and trades off
latency for durability. Although, batching can intro-
duce overheads of flushing, dirty buffers, and tuning,
the benefits outweigh these overheads.

e Keeping all file handles open: Since partitions are
typically very large (100 GB in our setting), the num-
ber of partition replicas placed on a Datanode is small
(a few hundred). Thus, Ambry keeps all file handles
open at all times.

e Zero copy gets: When reading a blob, Ambry utilizes
a zero copy [25] mechanism, i.e., the kernel directly
copies data from disk to the network buffer without
going through the application. This is feasible since
the Datanodes do not perform any computation on
the data at get operations.

4.3.1 Indexing

To find the location of a blob in a partition replica with low
latency, the Datanode maintains a light-weight in-memory
indexing per replica, as shown in Figure 6. The indexing is
sorted by blob id, mapping the blob id to the start offset of
the blob entry. The indexing is updated in an online fashion
whenever blobs are put (e.g., blob 60) or deleted (e.g., blob
20).

Similar to SSTables [5], Ambry limits the size of the index
by splitting it into segments, storing old segments on disk,

Partition

0 200 700 850 900 980 1040 100 GB
blob blob blob | blob blob
id 20 o id 70 id40 | id60 | id20

|

start offset of current end offset

index segment

Index

/| blobid | offset | flags | TTL

4
/
Index segment / ‘ J 20 930 del

Index segment 2

/ 40 850 - o
Index segment 3
60 900 - ©
Start offset: 700
End offset: 1020 70 700 - 1/2/2017

Figure 6: Indexing of blob offsets in a partition
replica. When blobs are put (blob 60) or deleted
(blob 20) the indexing stucture is updated.

and maintaining a Bloom filter for each on-disk segment
(Section 4.3.2).

The indexing also stores a flag indicating if a blob has
been deleted and optionally a time-to-live (TTL). During
get operations, if the blob has expired or been deleted, an
error will be returned before reading the actual data.

Note that the indexing does not contain any additional
information affecting the correctness of the system, and just
improves performance. If a Datanode fails, the whole index-
ing can be reconstructed from the partition.

4.3.2 Exploiting The OS Cache

Recently written data, which is the popular data as well, is

automatically cached without any extra overhead (by the op-
erating system). By exploiting this feature, many reads can
be served from memory, which significantly improves per-
formance. Thus, Ambry limits the memory usage of other
data structures in the Datanode. Ambry bounds the in-
dexing by splitting it into segments, with only the latest
segment remaining in-memory (Figure 6). New entries are
added to the in-memory segment of the indexing. When the
in-memory segment exceeds a maximum size it is flushed to
disk as a read-only segment. This design also helps toward
failure recovery since only the in-memory segment needs to
be reconstructed. Looking up blob offsets is done in reverse
chronological order, starting with the latest segment (in-
memory segment). Thus, a delete entry will be found before
a put entry when reading a blob. This ensures deleted blobs
are not retrievable.
Bloom Filters: To reduce lookup latency for on-disk seg-
ments, Ambry maintains an in-memory Bloom filter for each
segment, containing the blob ids in that index segment. Us-
ing Bloom filters, Ambry quickly filters out which on-disk
segment to load. Thus, with high probability, it incurs only
one disk seek. However, due to our skewed workload a ma-
jority of reads just hit the in-memory segment, without any
disk seeks.

S. REPLICATION

Replicas belonging to the same partition can become out
of sync due to either failures, or asynchronous writes that
write to only one datacenter. In order to fix inconsistent

Journal of partition p, Journal of partition p,

replica r/ replica r2
i 1. get blob ids after 600 i
offset blob id > | offset blob id

700 70) 2. ids ={55, 40, 70, 90} 600 130
PN

850 40 3. filter out missing blobs 670 55

4. get blobs {55, 90}
900 60 > 750 40
980 20 L5 blob 55 and blob 90 800 70
<€

latestOffset r2 = 600 6. write blobs and set 950 90

latestOffset r2 = 950 <

Figure 7: Journals for two replicas of the same par-
tition and an example of the replication algorithm.

replicas, Ambry uses an asynchronous replication algorithm
that periodically synchronizes replicas. This algorithm is
completely decentralized. In this procedure each replica in-
dividually acts as a master and syncs-up with other repli-
cas, in an all-to-all fashion. Synchronization is done using
an asynchronous two-phase replication protocol as follows.
This protocol is a pull-based approach where each replica in-
dependently requests for missing blobs from other replicas.

e First Phase: This phase finds missing blobs since the
last synchronization point. This is done by requesting
blob ids of all blobs written since the latest syncing
offset and then filtering the ones missing locally.

e Second Phase: This phase replicates missing blobs.
A request for only the missing blobs is sent. Then,
the missing blobs are transferred and appended to the
replica.

In order to find the recently written blobs quickly, the
replication algorithm maintains an additional data struc-
ture per replica, called a journal. The journal is an in-
memory cache of recent blobs ordered by their offset. Figure
7 shows example journals of two replicas (r1 and r2) and the
two phase replication procedure for r1 syncing with r2 from
latestOffset 600. In the first phase, r1 requests all recently
added blobs in 73 after latestOffset; using the journal r2 re-
turns a list B ={55, 40, 70, 90} of blob ids; and r filters out
the missing blobs (blob 55 and 90). In the second phase, r1
receives the missing blobs, appends the blobs to the end of
the replica, and updates the journal, indexing and latestOff-
set.

To provide improved efficiency and scalability of the sys-
tem, the replication algorithm employs a number of further
optimizations:

e Using separate thread pools for inter- and intra-data-
center replication with different periods.

e Batching requests between common partition replicas
of two Datanodes, and batching blobs transferred across
datacenters.

e Prioritizing lagging replicas to catch up at a faster rate
(by using dedicated threads for lagging replicas).

6. EXPERIMENTAL RESULTS

We perform three kinds of experiments: small cluster
(Section 6.1), production cluster (Section 6.2), and simu-
lations (Section 6.3).

6.1 Throughput and Latency

In this section we measure the latency and throughput
of the system using a micro-benchmark that stress-tests the

system (Section 6.1.1), under read-only, write-only and read-
write workloads.

6.1.1 Micro-Benchmark

We first measure the peak throughput. We designed a
micro-benchmark that linearly adds load to the system (by
adding more clients), until the saturation point where no
more requests can be handled. Each client sends requests
one at a time with the next request sent right after a re-
sponse.

This benchmark has three modes: Write, Read, and Read-
Write. In Write mode, random byte array blobs are put with
varying number of clients. In Read mode, first blobs are
written at saturation rate for a write-period of time. Then,
randomly chosen blobs are read from the written blobs®. In
most experiments we set the write-period long enough that
most read requests (>80%) are served by disk, rather than
RAM. Read-Write is a similar to Read, but serving 50%
reads and 50% writes after the write-period.

Since latency and throughput are highly correlated with
blob size, we use fixed-size blobs in each run, but vary the
blob size.

6.1.2 Experimental Setup

We deployed Ambry with a single Datanode. The Datan-
ode was running on a 24 core CPU with 64 GB of RAM, 14
1TB HDD disks, and a full-duplex 1 Gb/s Ethernet network.
4 GB of the RAM was set aside for the Datanode’s internal
use and the rest was left to be used as Linux Cache. We cre-
ated 8 single-replica 100 GB partitions on each disk, with a
total of 122 partitions. Using 14 disks with a 1 Gb/s network
might look like an overkill. However, disk seeks are the dom-
inant latency factor for small blobs. Since a large portion
of blobs are small (< 50 KB), we need the parallelism cre-
ated by using multiple disks (more detail in Section 6.1.4).
Note that Ambry is designed as a cost-effective system using
cheap HDD disks.

Clients send requests from a few machines located in the
same datacenter as the Datanode. These clients, that are
acting as Frontends, directly send requests to the Datan-
ode. The micro-benchmark discussed above was used with
varying blob sizes {25 KB, 50 KB, 100 KB, 250 KB, 500
KB, 1 MB, 5 MB}. We did not go above 5 MB since blobs
are chunked beyond that point.

6.1.3 Effect of Number of Clients

We ran the micro-benchmark with varying blob sizes, while
linearly increasing the number of clients. For Read mode,
the write-period was set such that 6 times the RAM size, was
first written. Figure 8a shows the throughput in terms of
MB/s served by the system. Adding clients proportionally
increases the throughput until the saturation point. Satura-
tion occurs at 75%-88% of the network bandwidth. The only
exception is reading small blobs due to frequent disk seeks
(discussed in Section 6.1.4). Saturation is reached quickly
(usually < 6 clients) since clients send requests as fast as
possible in the benchmark.

Figure 8b shows the latency normalized by blob size (i.e.,
average latency divided by blob size). Latency stays al-
most constant before reaching saturation point, and then
increases linearly beyond the throughput saturation point.
The linear increase in latency after saturation indicates the
system does not add additional overhead beyond request
serving.

4The random strategy gives a lower bound on the system’s
performance since real-world access patterns are skewed to-
ward recent data.

5MB-Write - -+ - 5MB-Read -+
500KB-Write —e&— 500KB-Read

50KB-Write - —4 - - 50KB-Read
Q
@
=3
5
[eN
<
[=2]
>
o
= :
£ L.
7
OvV L L L J
0 5 10 15 20
Number of Clients
(a) Throughput
Write 5MB = =+ - Write 50KB - —&-- Read 500KB ——
Write 500KB —&— Read 5MB «-:--+- Read 50KB
0.8
0.7
é’ 0.6
>
g 05
o
3 o4
el
I
5 03
£
§ o M
0.1 &
0 = L L L L L L L L J

0 2 4 6 8 10 12 14 16 18 20
Number of Clients

(b) Latency normalized by blob size

Figure 8: Throughput and latency of read and write
requests with varying number of clients on different
blob sizes. These results were gathered on a single
Datanode deployment.

6.1.4 Effect of Blob Size

In Figures 9a and 9b we analyzed the maximum through-
put (with 20 clients) under different blob sizes and work-
loads. For large objects (>200 KB), the maximum through-
put (in MB/s) stays constant and close to maximum net-
work bandwidth across all blob sizes. Similarly, throughput
in terms of requests/s scales proportionally.

However, for Read and Read-Write, the read throughput
in terms of MB/s drops linearly for smaller sizes. This drop
is because our micro-benchmark reads blobs randomly, in-
curring frequent disk seeks. The effect of disk seeks is am-
plified for smaller blobs. By further profiling the disk using
Bonnie++ [1] (an IO benchmark for measuring disk per-
formance), we confirmed that disk seeks are the dominant
source of latency for small blobs. For example, when reading
a 50 KB blob, more than 94% of latency is due to disk seek
(6.49 ms for disk seek, and 0.4 ms for reading the data).

Read and Write workload mostly utilize only the out-
bound and inbound link on the Datanode, respectively. How-
ever, Read-Write workload has a better mix and evenly uti-
lizes both links reaching higher throughput. Therefore, in
our full-duplex network infrastructure the Read-Write mode
is able to saturate both links reaching almost double the

Average | Max Min StdDev
Disk Reads 17 ms 67 ms | 1.6 ms 9 ms
Cached Reads 3 ms 5ms | 1.6 ms 0.4 ms
Improvement 5.5x 13x 0 23x

Table 3: Comparision of get request latency when
most of requests (83%) are served by disk (Disk
Reads) and when all requests are served by linux
cache (Cached Reads) for 50 KB blobs.

network bandwidth (~ 1.7 Gb/s in total out of the 2 Gb/s
available). For smaller size objects it reaches twice the Read
throughput, since Read-Write is a 50-50 workload with reads
being the limiting factor.

Figure 9c demonstrates the trend in latency under vari-
ous blob sizes. These results are before the saturation point
with 2 clients. Similar to throughput, latency grows linearly
except for reading small blobs. The higher latency in Read
is because most read requests incur a disk seek, while write
requests are batched and written together. The Read-Write
latency falls halfway between Read and Write latency be-
cause of its mixed workload.

6.1.5 Variance in Latency

The tail and variance in request latencies are important.
Figure 10 shows the CDFs of Write, Read, and Read-Write
mode experiments with 2 clients. The CDF of Read and
Write mode is very close to a vertical line, with a short
tail and a majority of values close to the median. The
jump around 0.15 in Read mode (for 50 KB blob size) is
because a small fraction of requests are served using the
Linux cache which is orders of magnitudes faster than disk
(Section 6.1.6). The Read-Write mode is a mixture of the
Read and Write CDF with a change around 0.5, following
the 50% read - 50% write workload pattern.

6.1.6 Effect of Linux Cache

We ran the micro-benchmark on 50 KB blobs and 2 clients
in two configurations: 1) writing 6 times more than the RAM
size before reading, so that most requests (83 %) are served
by disk (Disk Read), and 2) writing data equal to the RAM
size to keep all data in RAM (Cached Read). Table 3 com-
pares these two modes.

The Cached Read experiment performed more than 2100
requests/s (104 MB/s reaching 79% network bandwidth)
matching the maximum write throughput (Section 6.1.3),
compared to 540 requests/s for Disk Reads. We also mea-
sured the average, maximum, minimum, and standard devi-
ation of latency, shown in Table 3. In both cases, the min-
imum is equal to reading from the Linux Cache. However,
the Cached Read case improves the average and max latency
by 5.5x and 13x, respectively. This shows the significance of
exploiting the Linux Cache (Section 4.3.2).

6.2 Geo-distributed Optimizations

We analyzed our replication algorithm among 3 differ-
ent datacenters at LinkedIn {DC1, DC2, DC3}, located all
across the US. All experiments in this section are from pro-
duction workloads.

6.2.1 Replication Lag

We define replication lag between a pair of replicas (71,
r2) as the difference of 72’s highest used offset and r1’s lat-
est synced offset with r2. Note that not all data in the
replication lag needs to be transfered to ri, since it could
receive the missing blobs from other replicas as well.

We measured the replication lag among all replicas of a
given Datanode and the rest of the cluster, and found that

1000 10000 100
Write - -+ - Write - -+ -
Read —e— Read —e—
Read-Write - —&-- +* Read-Write - —&- -
Network . Network
Q ° 5
@ S 1000 E
% AA——. A % ;;
3 c
Q 5 @
< e © 10
=1 n - .
< ? Q .
£ § g *
x 100] .
© o > .
o < .
= '+
+ Wiite = =¥ =
, Read —e—
+ Read-Write - —& - -
10 '} '} J 10 '} J 1 '} 1 J
10 100 1000 10000 10 1000 10000 10 100 1000 10000
Blob Size (KB) Blob Size (KB) Blob Size (KB)

(a) Throughput (MB/s)

(b) Throughput (requests/s)

(c¢) Latency

Figure 9: Effect of blob size on maximum throughput, both in terms of MB/s and requests/s, and latency.
Results were gathered on a write-only, read-only, and mixed (50%-50%) workload. Reads for small blob sizes
(<200 KB) are slowed down by frequent disk seeks, while other requests saturate the network link.

Write-50KB - -+ -
Read-50KB —é&—
Read-Write-50KB - —& - =

Write-56MB -«
Read-5MB ——
Read-Write-5MB

1 &
0.8 | +
!
0.6 +
LDI' | S ;
(&) 'y :
04 | -4IA e . - e
E :
L :
0.2 » 3
0 %_l & f
1 1 1 J
0.1 1 10 100 1000
Latency (ms)

Figure 10: CDF of read and write latency with 2
clients for various blob sizes. Read-Write falls in
the middle with change around 0.5 due to the 50-50
mixed workload.

more than 85% of the values were 0. Figure 11 shows the
CDF of non-zero values grouped by datacenter. The 95th
percentile is less than 1 KB for 100 GB partitions (in all
datacenters), with slightly worse lag in datacenter 3 since it
is placed farther apart from others.

6.2.2 Replication Bandwidth

Ambry relies on background replication to write data to
other datacenters. We measured the aggregate network band-
width used for inter-datacenter replication during a 24 hour
period, shown in Figure 12. The aggregate bandwidth is
small (< 10 MB/s), similar across all datacenters, and cor-
related to request rates with a diurnal pattern. This value is
small because we batch replication between common replicas
and due to the read-heavy nature of the workload.

Figure 13 demonstrates the CDF of average replication
bandwidth per Datanode, for both intra- and inter-datacenter
replication. Intra-datacenter bandwidth is minimal (< 200
B/s at 95th percentile), especially compared to inter-datace-
nter with 150-200 KB/s at 95th percentile (1000x larger).

0.98
0.96
&
S &
% ’
g 094 §
A
0.92 ys
A
i
P
0.9 S DCi =+~
A DC2 —e—
DC3 - —&--
088 1 1 1 1 L J
1 10 100 1000 10000 100000 1x10®

Lag (Bytes)

Figure 11: CDF of Replication Lag among replica
pairs of a given Datanode and the rest of the cluster.
Most values were zero, and are omitted from the
graph.

The higher value for inter-datacenter is because of asyn-
chronous writes. However, the inter-datacenter bandwidth
is still negligible (= 0.2% of a 1 Gb/s link). The small differ-
ence among the 3 datacenters is due to the different request
rates they receive.

Figure 14 shows a zoomed in graph of only inter-datacenter
bandwidth. Inter-datacenter replication has a short tail with
the 95th to 5th percentile ratio of about 3x. This short
tail is because of the load-balanced design in Ambry. Intra-
datacenter replication has a longer tail, as well as many zero
values (omitted from the graph). Thus, replication either
uses almost zero bandwidth (intra-datacenter) or almost bal-
anced bandwidth (inter-datacenter).

6.2.3 Replication Latency

We define replication latency as the time spent in one it-
eration of the replication protocol, i.e., Tinissing blobs received
minus Treplication initiated- Figure 15 demonstrates the CDF
of average replication latency for intra- and inter-datacenter,
in our production workload.

Inter-datacenter replication latency is low with a median
of less than 150 ms, and a very short tail. Although this la-

11000

10000

9000

8000

7000

6000
5000 fs

4000
3000

Aggregate Replication Bandwidth (KB/s)

2000

1000
0 200 400 600 800 1000 1200 1400 1600

Time (minutes)

Figure 12: Aggregate network bandwidth used for
inter-datacenter replication during a 24 hour period
in production.

DC1-intra - -+ - DC3-intra -+ —&-- DC2-inter
DC2-intra —e— DC1-inter ---=--+- DC3-inter

‘ P {

0.9 v 7
08 fswa® s

0.7 i
0.6 / "1

|
| , |
ost A F f
M |
/

f

1

w
(=]
(&)
0.4 ;
03 A
B4
0.2

B . . . o .

1 10 100 1000 10000 100000 1x10°®
Average Replication Bandwidth per Datanode (B/s)

Figure 13: CDF of average network bandwidth used
per Datanode for intra- and inter-datacenter repli-
cation over a 24 hour period in production.

tency might appear to be high, the number of proxy requests
remain near-zero (< 0.001%). This is because users usually
read data from the same local datacenter to which they have
recently written. Therefore, replication has a minimal effect
on user experience.

Surprisingly, intra-datacenter replication latency is rela-
tively high (6x more than inter-datacenter) and with little
variance. This pattern is because of a pre-existing and pre-
fixed artificial added delay of 1 second, intended to prevent
incorrect blob collision detections. If a blob is replicated
in a datacenter faster than the Datanode receives the ini-
tial put request (which is possible with less strict policies),
the Datanode might consider the put as a blob collision and
fail the request. The artificial delay is used to prevent this
issue in intra-datacenter replication. This relatively small
delay does not have a significant impact on durability or
availability of data since intra-replication is only used to fix
failed/slow Datanodes, which rarely occurs.

6.3 Load Balancing

Since cluster growth occurs infrequently (every few months
at most), we implemented a simulator to show the behavior
of Ambry over a long period of time (several years), and at
large scale (hundreds of Datanodes). We tried a workload
that is based on production workloads. All results in this
section are gathered using the simulator.

1 .
Ry ol ~
0.9 G 2
,
0.8 &
+ / A
0.7 =’ K
il
0.6 A £
w + £
g 05 4/ 7
0.4 / /A
0.3 A
Y
0.2 A
B DCi-inter = 4=
0.1 o+ ,'A DC2-inter —&— |
S - i _DC3-inter - —--
0 'L' - 1 1 L J
0 50000 100000 150000 200000 250000

Average Replication Bandwidth per Datanode (B/s)

Figure 14: CDF of average inter-datacenter network
bandwidth used per Datanode over a 24 hour period
in production.

e 1 ¥ o
g 0o bt [
0.9 ; - \ 7
[1 g
08 F H 0.8 -+ £
’ ; ' A
{
0.7 - 0.7 |t
/ 1 . 4
06 i 06 |-+ ,:—--’,Z
8 1 [w l
a Q 05 V
o 05 ! ' © ' i
04 | At 0.4 |+
H ' ' 1
03 o 0.3 |teefl
i I
02| ; 02 |+
i o DCH = -F
01| i 0.1 ot fd DC2 —e—
; \ j' DC3 - —- -
0 ' L 1 1 1 1]
1000 1005 1010 1015 60 80 100 120 140 160 180 200

Replication Latency (ms)

(b) Inter Datacenter

Replication Latency (ms)

(a) Intra Datacenter

Figure 15: CDF of average replication latency (i.e.,
time spent to recieve missing blobs) for intra- and
inter-datacenter in production environment.

6.3.1 Simulator Design

The simulator’s design resembles Ambry’s architecture and
requests are served using the same path. However, there are
no real physical disks. For handling requests, only the meta-
data (blob id and size) is stored/retrieved, and the effect of
requests are reflected (e.g., disk space increase).
Workload: We use a synthetic workload closely resembling
the real-world traffic at LinkedIn. This workload preserves
the rate of each type of request (read, write, and delete),
the blob size distribution, and the access pattern of blobs
(based on age).
Cluster Expansion: The simulator starts with an initial
set of Datanodes, disks, and partitions in one datacenter.
Over time, when partitions reach the capacity threshold, a
new batch of partitions are added using the replica place-
ment strategy from Section 2.2. If partitions cannot be
added (e.g., if there is not enough unallocated space on
disks), a batch of new Datanodes are added.

6.3.2 Experiment Setup

The simulation is run in a single datacenter, with 10 Fron-
tend nodes. The experiment starts with 15 Datanodes, each
with 10 4TB disks, and 1200 100GB partitions with 3 repli-
cas. At each partition and Datanode addition point, a batch
of 600 partitions and 15 Datanodes are added, respectively.
The simulation is run over 400 weeks (almost 8 years) and

Average StdDev - - - -

1200

I
A e B
Lo Ly

Ae Mg

1000

o}
o
s}

Read Rate (KB/s)
(2]
o
o

N
[=3
[S]

200
0 - A 1. 1. 1. J. A J
0 50 100 150 200 250 300 350 400
Time (weeks)
(a) Without rebalancing
Average StdDev - - - - Max -=—--= Min =eeeeee
1200
1000
@ 800
o
<
Q .
© 600 i
& I
3 A
& 400 ,-,,“'.'\
200
IR 15
o AP RIS ST ST T
0 50 100 150 200 250 300 350 400

Time (weeks)

(b) With rebalancing

Figure 16: Average, standard deviation, maximum
and minimum of average read rate (KB/s) among
disks over a 400 week interval. The system is boot-
strapping in the first few weeks, and the results are
omitted.

up to 240 Datanodes. The simulation is run with and with-
out rebalancing with the exact same configuration, while
measuring request rates, disk usage, and data movement.

6.3.3 Request Rate

We measured the read rate (KB/s) for each disk at any
point of time. Figure 16 demonstrates the average, standard
deviation, maximum and minimum among these values, for
the system with and without rebalancing. The results for
write rates were similar and removed due to lack of space.

The average, which is also the ideal, is a dropping step
function. The drops are points where new Datanodes were
added to the cluster. In case of no rebalancing, a majority
of the disks are old read-only disks with almost zero traf-
fic, while a few disks receive most of the request. Thus, the
minimum is close to zero. Also, the maximum and stan-
dard deviation are significant (3x-7x and 1x-2x larger than
the average, respectively). When rebalancing is added, the
minimum and maximum move close to the average, and the
standard deviation drops close to zero. We conclude that
Ambry’s load balancing is effective.

6.3.4 Disk Usage

We analyzed the disk usage ratio, i.e., used space divided
by total space among disks, with and without rebalancing.
As seen in Figure 17, without rebalancing, the maximum
stays at the capacity threshold since some disks become and
remain full, while the minimum drops to zero whenever new

Average StdDev - - - - Max - —--- Min eeeeeee
1
0.8
2
& o6
(9]
j=}
@
w
=]
i~ 0.4
®
a
0.2
0
0
Time (weeks)
(a) Without rebalancing
Average StdDev - - - - Max -—--= Min -eeeeees
1
0.8
o 6
& o6
[} H
j=} H
© H
1% -
=] :
x 04 -
» :
a :
;
0.2 '
]
L]
) L)
Vo N)
0 1 LT s = O = b o L Lo J
0 50 100 150 200 250 300 350 400
Time (weeks)

(b) With rebalancing

Figure 17: Average, standard deviation, maximum
and minimum of disk usage ratio (i.e., used space
divided by total space) over a 400 week interval.

Datanodes are added. With rebalancing, the maximum and
minimum move closer to the average with temporary drops
in the minimum until rebalancing is completed. Addition-
ally, the standard deviation drops significantly, becoming
almost zero with temporary spikes on Datanode addition
points.

6.3.5 Evaluation Over Time

We evaluated the improvement over time by measuring
the integral of range (max-min) and standard deviation for
request rate and disk usage over the 400 week interval. As
shown in Table 4, rebalancing has a prominent effect improv-
ing the range and standard deviation by 6x-9x and 8x-10x,
respectively.

6.3.6 Data Movement

Whenever rebalancing is triggered, we measure the min-
imum data movement needed to reach an ideal state and
the data movement caused by rebalancing. We calculate
the minimum data movement by adding the difference be-
tween ideal and current disk usage among all disks above
ideal disk usage. This value is a lower bound on the feasible
minimum data movement since data is moved in granularity
of partitions. As shown in Figure 18, the data movement
of rebalancing is very close and always below the minimum.
This is because the rebalancing algorithms trades off perfect
balance (ideal state) for less data movement. Specifically,
the rebalancing algorithm usually does not remove (or add)

Integral over | Write Read Disk
400 weeks Avg Avg Usage
Range w/o RB 63,000 340,000 200
Range w/ RB 8,500 52,000 22
Improvement 7.5x 6x Ix
StdDev w/o RB 21,00 112,000 67
StdDev w/ RB 2500 11,000 6.7
Improvement 8x 10x 10x

Table 4: Improvement of range (max-min) and stan-
dard deviation of request rates and disk usage over
a 400 week interval. Results are from the system
with rebalancing (w/ RB) and without rebalancing
(w/o RB).

450

400 }\/\-;)/’*H
-+

350 At

300 /

250 ;‘/

200 p*

150

Data Movement (TB)

Minimum - -+ -
| Repalancer .+

100 L L L
0 2 4 6 8 10 12 14

Rebalancing Points

Figure 18: Data movement of the rebalancing algo-
rithm at each rebalancing point (i.e., whenever new
Datanodes are added) over a 400 week interval.

a partition from a disk if it would go below (or above) the
ideal state, even if this were to cause slight imbalance.

7. RELATED WORK

File Systems: The design of Ambry is inspired by log-
structure file systems (LFS) [21,23]. These file systems are
optimized for write throughput by sequentially writing in
log-like data structures and relying on the OS cache for
reads. Although these single machine file systems suffer from
fragmentation issues and cleaning overhead, the core ideas
are very relevant, especially since blobs are immutable. The
main differences are the skewed data access pattern in our
workload and additional optimization such as segmented in-
dexing and Bloom filters used in Ambry.

There has been work on handling metadata and small files
more efficiently. Some of these techniques include reducing
disk seeks [9], using a combination of log-structured file sys-
tems (for metadata and small data) and fast file systems
(for large data) [30], and storing the initial segment of data
in the index block [17]. Our system resolves this issue by
using in-memory segmented indexing plus Bloom filters and
batching techniques.

Distributed File Systems: Due to the extremely large
amount of data and data sharing needs, many distributed file
systems such as NFS [22] and AFS [16], and even more reli-
able ones handling failures, such as GFS, HDFS, and Ceph
[10, 24, 28] have emerged. However, all these systems suffer
from the high metadata overhead and additional capabili-
ties (e.g., nested directories, permissions, etc.) unnecessary
for a simple blob store. In many of these systems (e.g.,
HDFS, GFS, and NFS) the metadata overhead is magnified
by having a separate single metadata server. This server

adds an extra hub in each request, becomes a single point
of failure, and limits scalability beyond a point. Recent re-
search has addressed this problem by either distributing the
metadata [28] or caching it [20]. Although these systems al-
leviate accessing metadata, each small object still has a large
metadata (usually stored on disk), decreasing the effective
throughput of the system.

Distributed Data Stores: Many key-value stores, such
as [2,5,8,14], have been designed to handle a large number
of requests per second. However, these systems cannot han-
dle massively large objects (tens of MBs to GBs) efficiently,
and add unnecessary overhead to provide consistency. Also,
some systems [2,8,14] hash data to machines, creating large
data movement whenever nodes are added/deleted.

PNUTS [6] and Spanner [7] are scalable geographically
distributed systems, where PNUTS maintains load balance
as well. However, both systems provide more features and
stronger guarantees than needed in a simple immutable blob
store.

Blob Stores: A similar concept to partitions in Am-
bry has been used in other systems. Haystack uses logical
volumes [3], Twitter’s blob store uses virtual buckets [27],
and Petal file system introduces virtual disks [15]. Ambry is
amenable to some optimizations in these systems such as the
additional internal caching in Haystack. However, neither
Haystack nor Twitter’s blob store tackle the problem of load-
imbalance. Additionally, Haystack uses synchronous writes
across all replicas impacting efficiency in a geo-distributed
setting.

Facebook has also designed f4 [18], a blob store using era-
sure coding to reduce replication factor of old data (that has
become cold). Despite the novel ideas in this system, which
potentially can be included in Ambry, our main focus is on
both new and old data. Oracle’s Database [19] and Windows
Azure Storage (WAS) [4] also store mutable blobs, and WAS
is even optimized for a geo-distributed environment. How-
ever, they both provide additional functionalities such as
support for many data types other than blobs, strong con-
sistency guarantees, and modification to blobs, that are not
needed in our use case.

8. CONCLUSION

This paper described Ambry, a distributed storage sys-
tem designed specifically for storing large immutable media
objects, called blobs. We designed Ambry to serve requests
in a geographically distributed environment of multiple dat-
acenters while maintaining low latency and high through-
put. Using a decentralized design, rebalancing mechanism,
chunking, and logical blob grouping, we provide load bal-
ancing and horizontal scalability to meet the rapid growth
at LinkedIn.

As part of future work we plan to adaptively change the
replication factor of data based on the popularity, and use
erasure coding mechanisms for cold data. We also plan to
investigate using compression mechanisms and its costs and
benefits. Additionally, we are working on improving the
security of Ambry, especially for cross-datacenter traffic.

9. ACKNOWLEDGMENTS

We wish to thank the following people for their invaluable
contributions towards the development and deployment of
Ambry: our site reliability engineers, Tofig Suleymanov, Ar-
jun Shenoy and Dmitry Nikiforov; our alumni Jay Wylie; our
interns Tong Wei and Sarath Sreedharan; and our newest
member Ming Xia for his valuable review comments.

10.

[1]
2]

[14]

[15]

REFERENCES
Bonnie++. http://www.coker.com.au/bonnie++/,
2001 (accessed Mar, 2016).
A. Auradkar, C. Botev, S. Das, D. De Maagd,
A. Feinberg, P. Ganti, L. Gao, B. Ghosh,
K. Gopalakrishna, et al. Data infrastructure at
LinkedIn. In Proceeding of the IEEE International
Conference on Data Engineering (ICDE), 2012.
D. Beaver, S. Kumar, H. C. Li, J. Sobel, and
P. Vajgel. Finding a needle in Haystack: Facebook’s
photo storage. In Proceeding of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2010.
B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, et al. Windows Azure storage: A highly
available cloud storage service with strong consistency.
In Proceeding of the ACM Symposium on Operating
Systems Principles (SOSP), 2011.
F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer
Systems (TOCS), 26(2), 2008.
B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. In Proceeding of the Very Large
Data Bases Endowment (VLDB), 1(2), 2008.
J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
et al. Spanner: Google’s globally-distributed database.
In Proceeding of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2012.
G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proceeding of the ACM SIGOPS Operating Systems
Review (OSR), 2007.
G. R. Ganger and M. F. Kaashoek. Embedded inodes
and explicit grouping: Exploiting disk bandwidth for
small files. In Proceeding of the USENIX Annual
Technical Conference (ATC), 1997.
S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. In Proceeding of the ACM
SIGOPS Operating Systems Review (OSR), 2003.
Hortonworks. Ozone: An object store in HDFS. http:
/ /hortonworks.com/blog/ozone-object-store-hdfs/,
2014 (accessed Mar, 2016).
P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In Proceeding of the USENIX Annual
Technical Conference (ATC), 2010.
J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A
distributed messaging system for log processing. In
Proceeding of the USENIX Networking Meets
Databases Workshop (NetDB), 2011.
A. Lakshman and P. Malik. Cassandra: A
decentralized structured storage system. In Proceeding
of the ACM SIGOPS Operating Systems Review
(OSR), number 2, 2010.
E. K. Lee and C. A. Thekkath. Petal: Distributed
virtual disks. In Proceeding of the ACM Architectural

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

25]

(26]

27]

(28]

29]

(30]

Support for Programming Languages and Operating
Systems (ASPLOS), 1996.

J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. 5. Rosenthal, and F. D. Smith. Andrew:

A distributed personal computing environment.
Communications of the ACM (CACM), 29(3), 1986.
S. J. Mullender and A. S. Tanenbaum. Immediate
files. Software: Practice and Experience, 14(4), 1984.
S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,

W. Liu, S. Pan, S. Shankar, V. Sivakumar, et al. F4:
Facebook’s warm blob storage system. In Proceeding
of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

Oracle. Database securefiles and large objects
developer’s guide. https:
//docs.oracle.com/database/121/ADLOB/toc.htm,
2011 (accessed Mar, 2016).

K. Ren, Q. Zheng, S. Patil, and G. Gibson. Indexfs:
Scaling file system metadata performance with
stateless caching and bulk insertion. In Proceeding of
the IEEE High Performance Computing, Networking,
Storage and Analysis (SC), 2014.

M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS), 10(1),
1992.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun
network file system. In Proceeding of the USENIX
Summer Technical Conference, 1985.

M. Seltzer, K. Bostic, M. K. Mckusick, and C. Staelin.
An implementation of a log-structured file system for
UNIX. In Proceeding of the USENIX Winter Technical
Conference, 1993.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In Proceeding of
the IEEE Mass Storage Systems and Technologies
(MSST), 2010.

D. Stancevic. Zero copy I: User-mode perspective.
Linuz Journal, 2003(105), 2003.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. In Proceeding
of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2001.

Twitter. Blobstore: Twitter’s in-house photo storage
system. https://blog.twitter.com/2012/
blobstore-twitter-s-in-house-photo-storage-system,
2011 (accessed Mar, 2016).

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In Proceeding of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

S. A. Weil, S. A. Brandt, E. L. Miller, and

C. Maltzahn. CRUSH: Controlled, scalable,
decentralized placement of replicated data. In
Proceeding of the IEEE High Performance Computing,
Networking, Storage and Analysis (SC), 2006.

Z. Zhang and K. Ghose. hF'S: A hybrid file system
prototype for improving small file and metadata
performance. In Proceeding of the ACM European
Conference on Computer Systems (EuroSys), 2007.

