
Towards an Adaptable Systems Architecture for Memory Tiering
at Warehouse-Scale

Padmapriya Duraisamy
Google, USA

Wei Xu
Google, USA

Scott Hare
Google, USA

Ravi Rajwar
Google, USA

David Culler
Google, USA

University of California at Berkeley
Berkeley, USA

Zhiyi Xu
Google, USA

Jianing Fan
Google, USA

Christopher Kennelly
Google, USA

Bill McCloskey
Google, USA

Danijela Mijailovic
Google, USA

Brian Morris
Google, USA

Chiranjit Mukherjee
Google, USA

Jingliang Ren
Google, USA

Greg Thelen
Google, USA

Paul Turner
Google, USA

Carlos Villavieja
Google, USA

Parthasarathy Ranganathan
Google, USA

Amin Vahdat
Google, USA

ABSTRACT
Fast DRAM increasingly dominates infrastructure spend in large
scale computing environments and this trend will likely worsen
without an architectural shift. The cost of deployed memory can be
reduced by replacing part of the conventional DRAM with lower
cost albeit slower memory media, thus creating a tiered memory
system where both tiers are directly addressable and cached. But,
this poses numerous challenges in a highly multi-tenant warehouse-
scale computing setting. The diversity and scale of its applications
motivates an application-transparent solution in the general case,
adaptable to specific workload demands.

This paper presents TMTS (Transparent Memory Tiering Sys-
tem), an application-transparent memory tiering management sys-
tem that implements an adaptive, hardware-guided architecture
to dynamically optimize access to the various directly-addressed
memory tiers without faults. TMTS has been deployed at scale for
two years serving thousands of production services, successfully
meeting service level objectives (SLOs) across diverse application
classes in the fleet. The solution is developed in terms of system
level metrics it seeks to optimize, and evaluated across the diverse
workload mix to guide advanced policies embodied in a user-level
agent. It sustains less than 5% overall performance degradation
while replacing 25% of DRAM with a much slower medium.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582031

CCS CONCEPTS
• Software and its engineering → Memory management; •
Computer systems organization→Distributed architectures.

KEYWORDS
Memory Tiering, Memory Management, Warehouse-Scale Comput-
ing
ACM Reference Format:
Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,
Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela Mi-
jailovic, Brian Morris, Chiranjit Mukherjee, Jingliang Ren, Greg Thelen, Paul
Turner, Carlos Villavieja, Parthasarathy Ranganathan, and Amin Vahdat.
2023. Towards an Adaptable Systems Architecture for Memory Tiering at
Warehouse-Scale. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 3 (ASPLOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3582016.3582031

1 INTRODUCTION
DRAM is a large and growing portion of infrastructure spend in
large scale computing environments, growing faster than other
system components including CPU and storage. By some estimates,
DRAM will be what limits cost-effective compute capacity [5]. Sev-
eral possible approaches may reduce the relative spend on DRAM,
ranging from application-level optimizations to improved software
memory management to new memory hierarchy and hardware.

In this paper, we explore reducing the cost of deployed memory
by replacing a fraction of the conventional DRAM primary tier
(tier1) with a lower cost albeit slower secondary tier memory media
(tier2), thus creating a tiered memory system where both tiers are
directly addressable and cached. This system design point is quite
distinct from virtual memory [13], where a very large swap device

727

https://doi.org/10.1145/3582016.3582031
https://doi.org/10.1145/3582016.3582031
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582016.3582031&domain=pdf&date_stamp=2023-03-25


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Padmapriya Duraisamy, et al.

or remote resource [14, 23, 35, 39] provides a backing store for
much smaller physical memory, and zswap [32], where the backing
store is a region of DRAM holding compressed pages, as both tiers
are directly accessed, without page faults. Together, the tiers form
the physical memory beyond L3, unlike ‘memory mode’ of Intel®
OptaneTM Persistent Memory [2], where DRAM functions as an
L4 cache in front of a much larger slow memory tier. Further, tier
usage is application transparent, unlike hybrid models of persistent
memory [12, 40, 54], where persistent data structures explicitly
use semantically distinct tiers. The system actively manages page
placement and the associated virtual-to-physical mapping to keep
most frequently accessed (hot) pages in tier1 and least accessed
(cold) ones in tier2, even though both are directly addressed and
accessible without incurring a fault.

Memory capacity tends to be provisioned more conservatively
because memory is inelastic relative to CPU and the implications of
running out of memory (OOM) on a system is an OOM exception
which is extremely undesirable, even for lower tier applications.
This presents a unique opportunity to offload memory that is rarely
needed to lower cost media, delivering the same aggregate memory
capacity to applications with little or no performance impact, lever-
aging wide variability in required access latency and bandwidth.
This approach inherently involves trade-offs between cost and per-
formance, as cost savings are intrinsically related to differences
in bandwidth and latency of the two media. It poses numerous
challenges to deployment in a highly multi-tenant warehouse-scale
computing (WSC [9]) environment with diverse workloads [48].
Machines run a range of heterogeneous workloads at high utiliza-
tion while meeting specific application performance and reliability
requirements. The diversity and scale of these applications motivate
an application-transparent solution in the general case.

TMTS is a memory tiering management system that implements
an adaptive, hardware-guided architecture to transparently manage
accesses to the various memory tiers. The current system imple-
mentation provisions 25% of total memory in a slower, lower-cost
tier2 using a variant of Intel Optane Persistent Memory [2]. This
design point maximizes cost reduction within performance degra-
dation constraints, further constrained by discrete DIMM capacity
offerings. Even with 25%, given the scale of deployment, the upside
is substantial.

TMTS has been deployed in a multi-tenant WSC environment
successfully serving production services for two years. It uses spe-
cific metrics to deliver robust performance and meet various service
level objectives (SLOs) across a highly diverse workload mix. TMTS
implements mechanisms where software and hardware layers be-
low the application work together to transparently identify and
migrate application pages between different tiers.

The paper makes the following contributions:

• Presents the design and implementation of an unconven-
tional tieredmemory system and itsmanagement that achieves,
in production, a target <5% performance impact with 25%
replacement of DRAM with a much slower tier in a diverse,
highly dynamic, multi-tenant warehouse-scale setting.

• Defines machine-level optimization metrics for memory tier-
ing used to adaptively balance complex high-level fleet-wide
application performance and utilization goals (Section 2).

• Introduces a robust A/B testing methodology for live com-
plex system evaluation at scale (Section 4).

• Presents the first comprehensive analysis of a directly acces-
sible tiered memory system in a production warehouse-scale
environment successfully serving diverse application classes
(Sections 5 and 7).

• Evaluates a range of policies and demonstrates the effec-
tiveness of hardware-assisted event profiling to meet perfor-
mance requirements (Section 6), identifying the importance
of proactive demotion and rapid detection of promotion can-
didates.

• Reveals how address translation overhead, interference ef-
fects, and page-size issues become critical challenges once
placement is well optimized, calling for new malloc-level
techniques to reduce "access fragmentation", especially with
hugepages.

• Utilizes the live A/B testing regime in evidence-driven de-
velopment of adaptive tiering-aware cluster scheduling to
reduce performance impact tails while maximizing utiliza-
tion, and application-guided, tiering-aware hugepage man-
agement to reduce access fragmentation and improve tier2
utilization (Section 8).

Our experience highlights the complexity of managing memory
tiers at scale where workload behavior may change daily or be
stable for weeks and then change suddenly. We believe this system
design and the methodology used to capture the impact of com-
plex interactions of live diverse workloads at scale will open new,
increasingly important avenues of research.

2 CONSIDERATIONS FOR MEMORY TIERING
AT SCALE

Our WSC environment consists of a global fleet of geographically
distributed clusters, each hosting many cluster-wide application ser-
vices. A cluster manager (the Borg scheduler [50]) schedules tasks
to maximize utilization andmeet various SLOs [48]. In a tieredmem-
ory architecture, tier2 (e.g., low cost Optane) has lower bandwidth
and higher latency than tier1 (e.g., DRAM). However, applications
can access pages resident in tier2 directly without taking a fault. De-
ploying such an architecture in our environment motivates special
considerations to deal with performance differences.

Application services fall into two classes relevant for mem-
ory tiering - high importance latency sensitive (HILS) and the rest
(non-HILS). HILS includes user-facing applications with tight re-
sponse time requirements, caching applications in a critical path
of other HILS applications, and data processing tasks (Production
Tier in [48]). Non-HILS includes throughput-oriented applications,
batch, ML training pipelines, and others with weaker SLOs. The
classes are often co-located on the same machine. The Borg sched-
uler actively manages jobs across the cluster based on observed
performance, which memory tiering also impacts.

HILS SLOs often require sustaining a certain throughput per
machine within a bounded tail latency. To deal with SLO diversity,
cluster-level scheduling and machine-level resource management
can collectively leverage multi-tenancy to deploy policies where ap-
plicationswithweaker SLOs can be evicted tomeet requirements for
latency sensitive ones. Such multi-tenant computing environments

728



Towards an Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

must also optimize for aggregate demands and not just individual
application needs.

While aspects of these issues have analogs in longstanding tech-
niques for virtual memory management, the workload mix, cluster-
wide execution, sensitivity to tail latency, and availability require-
ments give the problem of memory tiering at scale unique charac-
teristics. Managing a non-faulting 2-tier memory system is similar
to page migration across NUMA nodes [18]. The system continu-
ously monitors and updates virtual-to-physical address mappings,
moving less frequently accessed cold pages to tier2 and hot pages to
tier1, where both tiers are directly addressed and cacheable. Unlike
conventional virtual memory or swap, no page faults occur. La-
tency, bandwidth and interference characteristics of tier2 media are
sufficiently different as to require new management mechanisms.

The above challenges motivate the following goal for a tiered
memory design and deployment: Maximize fleet-wide memory cost
reduction (the product of per-machine tiered replacement ratio and the
fleet-wide 2-tier machine fraction) while minimizing impact on overall
machine throughput and meeting various individual application SLOs.
The focus on fleet-wide rather than an individual machine provides
multiple optimization vectors to explore. Two key considerations
emerge as a result of the performance differences between tiers.

(1) Impact to utilization: If we cannot identify sufficient applica-
tion memory to move to tier2 while meeting our objectives,
we will have machines with lower effective total memory
capacity. This in turn impacts throughput (i.e., the number
of tasks and the size of tasks run on the machine), resulting
in under-utilized compute and hence lower CPU utilization.

(2) Impact to individual task runtime: A slower, cheaper tier has
longer latency and lower bandwidth. Latency sensitive tasks
accessing it will experience slowdown unless carefully man-
aged. This may impact effective utilization of tier2 capacity.
Contention for this bandwidth-constrained resource may
also impact performance of other tasks.

These observations lead to two machine-level metrics for mem-
ory tiering stack at warehouse-scale - in general terms, aggregate
task capacity and application performance. Meeting the fleet-wide
goal requires them to be considered simultaneously. Unfortunately,
multi-tenancy, multiple resource dimensions (e.g., CPU, memory),
and variations in workload mix and behavior over time combined
with cluster-level loads make these metrics insufficient to isolate
system effectiveness.

To better analyze the tiering stack, we define two proxy metrics
directly connected to the tiering architecture itself:

• Secondary Tier Residency Ratio (STRR) is the fraction
of allocated memory residing in tier2. It provides a normal-
ized perspective on tier usage. STRR serves as a proxy for
measuring impact to utilization.

• Secondary Tier Access Ratio (STAR) is the fraction of all
memory accesses of an application directed towards pages
resident in tier2. A lower STAR means a lower performance
impact. STAR serves as a proxy for application performance
degradation.

As each machine has a certain fraction of its memory in tier2
(25% in this study), the system aims to bring STRR close to that value
in steady state. Keeping STRR high maximizes memory capacity,

but there is no benefit in under utilizing tier1 DRAM. Increasing
STAR reflects degraded performance. The more tier2 is utilized,
the greater the risk, but the risk is mitigated by keeping STAR low.
These proxies sharpen the system objective: to minimize STAR
while tracking STRR close to the machine ratio.

At low memory utilization, STAR and STRR can be 0 by keeping
all allocations in tier1. To meaningfully assess these metrics, we
consider machines at total memory utilization of >75% at median
and >90% at 95th percentile.

Figure 1: Performance and tier2 access ratio correlation.

Figure 1 summarizes our findings, developed fully below, show-
ing the observed range of STAR and the corresponding impact to
application performance across multiple clusters on thousands of
machines over several months. The cumulative distribution func-
tion (CDF) of STAR shows that the tier2 access ratio is maintained
below 1% at the socket level in more than 99% of instances. We
achieve our operational goal of limiting performance degradation
to less than 5% in aggregate specifically when STAR is below 0.5%.

This relationship allows the system objective for the current
deployment to be stated more precisely; it maintains median STAR
below 0.5% and p95 STAR within 1.5% while STRR approaches 25%
when memory utilization exceeds 75%. The specific thresholds will
vary depending on media and workload characteristics, but any
tiering stack must adapt with diverse time-varying demand to meet
an objective of this form.

To meet SLOs in a diverse environment, a tiering stack must
support flexible application-specific tier management policies. We
achieve this by driving policy decisions from userspace and using
kernel mechanisms to actuate policy decisions.

3 BASE ARCHITECTURE FOR TMTS
TMTS dynamically manages tiered memory placement at page
granularity. Its system architecture comprises four layers, illustrated
in Figure 2. The bottom layer abstracts the hardware, which presents
a physical address space segmented across two or more types of
memory devices. The second layer from the top separates the page
management policy from the mechanisms for candidate detection
and page migration, which are performed by the lower layer kernel
components. A key lesson from past production experience is that
effective use of kernel mechanisms requires many design iterations
addressing subtle behaviors only witnessed at production scale, as
well as opportunities to optimize for specific aspects of theworkload.
A user space policy layer provides this flexibility and velocity. The
top cluster-level layer consists of the Borg scheduler that workswith

729



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Padmapriya Duraisamy, et al.

perf

Userspace

Kernel

ufard

perf events
(accessed 

tier2 pages)

bpf events
(accessed

tier2 pages)

hot page 
promotion

page 
access 
scan

page 
migration

NUMA 
node

precise PMU 
sampling

Application

cold page 
demotion

demotion 
age

policies

tier1

HardwareLow-cost 
Memory

NUMA 
node

NUMA 
node

tier2
NUMA 
node

Low-cost 
MemoryDRAMDRAM

Tier Aware Borg Cluster Schedulingscheduling 
hints Cluster

borglet

Figure 2: Base architecture of TMTS.

the node agent, Borglet, and manages a continuous stream of multi-
machine job requests, observing load and performance metrics
on each machine and dispatching tasks to individual servers [48].
In TMTS, it employs tier-aware scheduling policies for better job
placement, described in Section 8.2.

Linux enumerates and initializes tier2 memory devices as NUMA
memory nodes. TMTS defines a new tiered hierarchy over memory
nodes. This results in two groupings for the current deployment, but
is expandable to handle more than two tiers or alternative memory
hierarchies, such as CXL attached devices.

We use measured access patterns to migrate pages between tier1
and tier2, demoting infrequently accessed "cold" pages to lower tiers
and promoting frequently accessed "hot" pages to upper tiers. Both
involve page migration using existing kernel mechanisms [18]. A
kernel daemon [32] periodically scans page access bits to deter-
mine page idle age and identify cold and hot pages. Cold page
demotion largely follows the pattern used for conventional virtual
memory [21]. Hot page promotion is more novel: no page fault
event serves to trigger it. Memory that is mapped to tier2 can be
accessed directly, but potentially substantial application slowdown
incurs if frequently accessed. Hot usage is determined through
system observation of access frequency. This aspect has much in
common with NUMA node migration, but the penalties for hot
page mischaracterization are much greater. Cold page detection
inherently needs only infrequent scans, while rapid detection is
critical for newly hot pages. TMTS uses precise hardware sampling
of tier2 memory access events through the hardware performance
monitoring unit (PMU) to enable timely detection.

A key design aspect is the division of responsibilities and infor-
mation exchanged between the kernel and the userspace daemons,
Borglet and ufard, responsible for promotion and demotion policies.
Later sections investigate our evidence-driven approach to deter-
mine effective policies using the rapid exploration this separation
enables. Those explorations set the stage for more sophisticated
adaptive policies, described later.

3.1 Cold Page Detection and Demotion
Page demotion requires identifying and moving most infrequently
accessed pages from tier1 to tier2. We classify a page as cold with
threshold t when it has not been accessed in the prior 𝑡 seconds [32].
Figure 3 shows pages classified as cold for various thresholds and
aggregate workloads across several large clusters used in this study.
This data is inline with cold memory patterns reported by other
largeWSCs [32, 52] and drives the design point of 25% tier2 capacity.
We provide more detail about the workloads, their scale and mix
in Section 4. Figure 3(b) gives a visual sense of how cold memory
distributes throughout the workloads. Jobs are ordered by cold
memory ratio at the 2-minute threshold and the area of the bar
is the portion of total memory usage due to the job. Most of the
workload has ample cold usage for the 25% tier2 design point, but
jobs vary significantly. The demotion policy choice determines the
value of 𝑡 and its granularity by application class, per application, or
time varying. A demotion mechanism detects candidates according
to such policy and migrates selected ones.

(a) Cold memory ratio across 6 clusters at 2m, 4m, 8m ages

(b) Cold memory ratio by task memory usage at 2m age

Figure 3: Distribution of cold memory normalized to total
memory usage.

The daemon, ufard, conveys demotion policy to the kernel by
specifying the cold age threshold in each task’s cgroup. The kernel
uses these per-application values to select pages to demote during
scan. To enable proactive policies, the kernel provides the userspace
daemon a cold age histogram [32] - the frequency distribution of
inter-access interval duration. It answers questions such as how
many pages were not accessed for at least 2 minutes. The policy
engine uses this to identify application access patterns and adjust
parameter values.

Since HILS and non-HILS co-locate on a machine and demotion
consumes constrained tier2 bandwidth, TMTS avoids bursty demo-
tions that may interfere with HILS applications. TMTS prefers to
penalize non-HILS, including potentially evicting them from the
machine to ensure minimal impact to HILS application tail latencies.

Linux treats file-backed pages and swap-backed pages differently
and other work [52] shows considerable complexity in swapping

730



Towards an Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

file-backed pages. Applications in our environment make extensive
use of distributed storage and, hence, rely on swap-backed memory
(anonymous and tmpfs) for more than 98% of their pages. Thus,
only swap-backed pages are treated as demotion candidates.

Tiering gives rise to memory management concerns roughly
analogous to false sharing where hot and cold objects are mixed in
a page, exacerbated by hugepages. Techniques to address this issue
are examined in the empirically-driven policy development of later
sections.

3.2 Promotion of Hot Pages
Page promotion requires identifying and moving frequently ac-
cessed pages from tier2 to tier1. While the page faults required in
swap-based approaches [32, 52] can serve to identify candidates on
first access, microsecond penalties on the critical path is of deep
concern. Also, for rarely accessed pages, promotion on first access
may be counterproductive. Multiple accesses over a short interval
provide a stronger indication of change in usage of a previously cold
page. Given the latency-critical nature of our HILS applications,
promotions must be as non-disruptive as possible. Therefore TMTS
focuses on proactive fault-less methods to rapidly identify promo-
tion candidates, and uses memory access event sampling through
the hardware PMU coupled with proactive and periodic scanning of
the page accessed bits (A-bits).

Sampling: Event based sampling enables timely identification.
Modern CPUs support precise event based sampling, such as PEBS
on Intel platforms [16] and IBS on AMD platforms [19]. We use
precise event based sampling on Intel to profile recently accessed
addresses in tier2 memory by sampling last level cache (LLC) miss
events. Since tier2 is cachable, only LLC miss events need be con-
sidered. Sampling all LLC miss events is impractical and not useful.
The vast majority of LLC miss traffic targets tier1, which is not per-
tinent to promotion. The hardware deployed with TMTS supports
precise events filtered to loads sourced from tier2. Unfortunately,
the hardware does not support such filtering for memory stores,
so stores are not sampled. We configure sampling to collect 1%
of memory loads from tier2 and promote all the pages identified
by this sampling. We examine the effectiveness of this pragmatic,
albeit imperfect detector in Section 6.2.

Scanning: To detect hot pages that may be missed by sampling,
we also perform proactive, periodic scan-based promotion. We de-
fine the page hot age as number of scan periods during which
the page was recently accessed. We extend our in-kernel page A-
bit scanner to track page hot age which allows it to differentiate
between actively and lightly accessed pages. In the current deploy-
ment, the hot scan period is configured to 30 seconds to strike a
balance between scan overhead and timeliness of identification
(see Section 6.2 for more detail). The base policy promotes pages
touched in two or more consecutive hot scan periods. For efficiency,
we do not do TLB invalidations in A-bit scans. Even though this
optimization may sacrifice some page age accuracy, we have not
seen it impacting demotion and promotion effectiveness in practice.

The deployed demotion policy ensures that a page resident in
tier1 has not been accessed for an extended period (O(min)) prior to
a subsequent demotion. This allows the system to serve short lived

Table 1: tier2 DIMM Bandwidth

Access Pattern Bandwidth (GB/s)
Sequential Read 6.9
Sequential Write 2.2
Random Read 1.8
Random Write 0.5

allocations from tier1 and avoids thrashing, where pages repeatedly
move between tier1 and tier2 consuming scarce tier2 bandwidth.

3.3 Policy Management
The policy daemon in TMTS, ufard, uses the mechanisms provided
by the Linux kernel to actuate page migration policies. It uses the
standard perf interface in Linux (e.g., perf_event_open()) to set
up sampling and process access events. It also installs a small BPF [3]
program into the kernel to optimize the collection of tier2 hot page
ages and their page addresses from the in-kernel page A-bit scanner
into per NUMA node BPF ring buffers. ufard selects tier2 resident
pages that meet the hot age threshold for promotion. The system
currently manages page events with physical page addresses and
promotes selected physical pages through a custom system call.

3.4 Policy Constraints due to Hardware
Restrictions

Our deployment uses a variant of Intel Optane Persistent Memory
as tier2. Such tier2 DIMMs have highly constrained bandwidth,
supporting < 1/10 the memory bandwidth of the DDR4 channels
typically on Intel® Xeon® Scalable Processors. In the current hard-
ware implementation, tier2 DIMM bandwidth saturation also im-
pacts regular DRAM latency as the tier2 DIMMs share a memory
channel with DRAM DIMMs. This limits promotion and demo-
tion aggressiveness. Table 1 lists the measured bandwidth of tier2
DIMMs in our configuration under different access patterns. The
measured idle read access latency is about 325ns, cf, [28, 55] for
details. Based on cold page profiles (Figure 3), available DIMM
capacity, and hardware bandwidth constraints, we target 25% of
system memory capacity for tier2. These hardware limitations re-
sult in the following policy decision constraints for our current
deployment.

No direct allocations into tier2: This constraint avoids scenarios
where newly allocated pages (with no access history) in tier2 end
up hot and accessed before promotion. The system allocates task
memory only into tier1 and relies on demotions to populate tier2.
Allocating only into tier1 can increase OOM conditions since all
allocated pages occupy tier1 until pages are identified as cold and
demoted.

No demotions to remote socket tier2: Hardware Quality of Ser-
vice (QoS) features limit the impact to DRAM latency under high
tier2 bandwidth demand. QoS depends on feedback from the mem-
ory controller to the requesting CPU core. QoS is less effective at
throttling accesses to tier2 DIMMs attached to the remote socket
because the feedback signal must travel between sockets. The drop
in effectiveness (shown in Section 6.3) is large enough that we only
demote the memory of tasks to tier2 DIMMs on the socket where
the task is running.

731



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Padmapriya Duraisamy, et al.

These choices are not fundamental to TMTS, but an artifact of
the underlying hardware implementation. Future hardware imple-
mentations may not suffer from these restrictions thus relaxing
the constraints discussed above. Current constraints have the side-
benefit of demonstrating the resilience of the system design.

4 EVALUATION METHODOLOGY
We have deployed TMTS in a portion of our fleet across multiple
clusters serving production services for nearly two years. We use 2-
socket Intel Xeon servers with DDR4 DIMMs as tier1 and a variant
of Optane DIMMs as tier2.

We performed a series of A/B experiments using 2200 experi-
mental servers and 1000 control servers deployed across 6 clusters
spread geographically and serving hundreds of thousands of pro-
duction services daily over this period utilizing a subset of the
machines for various experiments. The experimental machines (2-
tier) have 75% of the memory capacity served by a DDR4 tier1 and
the remaining 25% of memory capacity served by tier2 DIMMS.
The control machines (1-tier) use the same server configuration
and total memory capacity as the experimental machines, except
have all-DDR4 memory. Each cluster has a mix of control and ex-
perimental machines.

The Borg scheduler schedules production jobs across all applica-
tion classes (HILS and non-HILS) onto both control and experimen-
tal machines assigning tasks from various production services to
sets of machines using the same algorithm as in the rest of the fleet,
(i.e., without any experiment-specific scheduling policies including
the ones described in Section 8.2). Less than 1% of workloads in
these clusters avoid tier2 for business reasons. Jobs routinely run
on both experimental and control machines. The dynamic nature
of scheduling constraints may lead to an imbalanced scheduling of
jobs across these machines, which is inherent to such a complex
computing environment. We ensure causality of inferences by com-
paring task replicas from jobs running on experimental machines
for each service with those running on control machines from the
same service.

The total study population used in evaluation consists of over
100K distinct jobs, roughly a quarter HILS, for which we have over
1M distinct HILS application instances and 330M non-HILS. Of
these, 70% of HILS and 90% of non-HILS have sufficient coverage of
experimental and control machines to match for use in comparative
analysis (cf, Figure 6). We normalize the performance impact to the
job’s compute footprint to evaluate how well the stack works for
the applications that are most critical to target metrics. Experiments
are run for an extended period, typically about 4 weeks, to gain
adequate statistical power given the high diversity of the workload.
The mean requested CPU limit for HILS is twice that of non-HILS. It
has a narrower stddev (1.24x mean, vs 1.7) but much larger P99 (5.3x,
vs 2.0). CPU usage shows a wider dispersion. Memory limits show
a similar picture, except non-HILS P99 being ten times the mean.
The sub-population used for comparative analysis shows a similar
distribution to the full population. The workload characteristics are
consistent with that detailed in [48], which calls out the extreme
diversity that makes population-based analysis at scale essential
and is not captured in stand-alone benchmarks.

We measure the effectiveness of the deployed system using vari-
ous metrics (including STAR and STRR). We compute a confidence
interval and control the false positive rate at 5%.

5 EMPIRICAL RESULTS
The effectiveness of the 2-tier design is reflected in the product of
total task capacity and per-task performance. Figure 1, introduced
above, provides an overall multi-cluster, total workload assessment
relative to our primary system goal - identifying 25% of active
address space for demoting to the secondary tier while maintaining
the overall performance impact to under 5%. It shows that the
performance goal ismet at a STAR of 0.5% in the current deployment.
This section establishes the empirical basis underlying these results
and shows their variation across the workload by building from
the constituent proxy measures to the resulting overall behavior
for a single policy and then investigates policy effects. The data
presented in this section is collected from a slice of 300 servers
across 6 clusters during a 5-week period.

5.1 Memory Utilization / Task Capacity
As applications have widely different, time-varying memory and
computing demand, memory utilization serves as a proxy for ob-
tained computing capacity. If tier2 utilization causes performance
degradation so as to threaten SLOs, the Borg scheduler will schedule
less load onto the machine, thereby reducing memory demand and
resulting utilization. Figure 4 shows memory utilization for 2-tier
(experimental) and 1-tier (control) machines over all clusters for
the experiment duration. The distribution of memory utilization is
similar in both groups: averaging 75%, 77% at the median (P50), 80%
at the mode, and 91% at the tail (P95). This strongly corroborates
that the same task capacity is maintained in both groups.

Figure 4: Distribution (PDF, CDF, variation) of memory uti-
lization on 2-tier and 1-tier machines.

Memory utilization varies substantially across machines and
over time. To demonstrate that the deployment maintains capacity
across operational variation, Figure 4 overlays the CDF of mem-
ory utilization of the total experiment duration with box plots of
the percentiles (P5, P25, P50, P75 and P95) across the series of
time-windows in the observation period. For example, the memory
utilization at P50 is 77%, but at different points of time, the P50
varies between 70% and 83% for 1-tier machines.

The similarity of the memory utilization trends indicates the
tiering stack maintains task capacity stably across the complicated

732



Towards an Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and dynamic machine utilization reality in a WSC. At lower utiliza-
tion strata, we see slightly higher utilization and lower variation in
the 2-tier machines than in the 1-tier. At upper strata (P90) 2-tier
machines have slightly lower memory utilization than that of 1-tier
though well above 80%. We measured CPU utilization and total task
counts on the 2-tier and 1-tier machines and found they aligned
with the memory utilization trends.

5.2 Residency Ratios
Given the similarity of overall memory utilization, we focus on the
2-tier machines and how the pages resident there relate to available
cold pages.

(a) Tier2 residency ratio

(b) Cold memory coverage

Figure 5: Tier2 residency ratio and cold memory coverage.

Figure 5(a) shows the overall STRR. The mode, mean, and median
are slightly above the 25% of deployed hardware capacity ratio,
showing that the promotion/demotion strategy closely tracks this
target. Considerable variation is present, but P10-P90 operate within
20-35% utilization.

An important reference point is the relative amount of cold pages
available in an address space, observed to vary between 28% and 42%
in the experiment in Figure 3(a). We define cold memory coverage
as the fraction of 2 minute cold pages stored in tier2. Figure 5(b)
shows that this metric is relatively high especially compared to
swap based solutions [32], consistently > 50% and averaging 75%
across all 6 clusters. This demonstrates that TMTS is successful at
targeting a substantial portion of total addressable cold memory.
Note that TMTS can adapt the promotion/demotion strategy to
achieve any deployed tier2 hardware capacity ratio within bounds
of the hardware performance characteristics.

5.3 Access Ratios / Bandwidth
Having established that overall task capacity is maintained and
tier2 capacity is well-utilized, we turn to access frequency of pages
resident in tier2.

Figure 6(a) shows STAR of 2-tier machines. The median access
ratio is 0.3% and the P95 tail less than 1%. For reference, the con-
gestion limit for the tier2 hardware occurs at STAR approximately
1.5%, discussed further below. Note that we do see a tail extending
to 2%. The performance impact of this long tail STAR is also vis-
ible in Figure 6(b) and Figure 6(c) which capture the application
performance impact. In Section 8, we discuss several strategies to
mitigate such tails.

These results indicate that the promotion/demotion process is
highly effective in keeping only cold pages resident in tier2. How-
ever, delay in detecting the increased reference rate can increase the
amount of tier2 references, but the relationship is subtle because
blocks of those pages are cached and the eventual promotion is
more likely to operate from cache.

To better understand this behavior, Figure 7 breaks down the tier2
bandwidth usage to application traffic and promotion/demotion traf-
fic relative to total tier2 bandwidth usage across the full operating
range. For all but very low utilization where demotion dominates,
about 80% of tier2 bandwidth is due to applications accessing pages
resident in that tier, promotion being about 1/3 of the remaining
and demotion 2/3. This suggests the system is effective in selecting
pages for demotion while avoiding thrashing/ping-pong effects.

5.4 Overall Performance Impact
Putting the above together, the performance impact illustrated in
Figure 1 can be broken down across the diverse production work-
loads. The principal figure of merit is the difference in instructions
per cycle (IPC) obtained by a job on 1-tier control machines vs.
that on 2-tier experimental machines, normalized by the IPC of
the control group. This metric is assessed over the population of
jobs in the production environment. Figure 6(b) shows the distri-
bution of application IPC shift. The median IPC impact is 2.3%. At
P5, the impact is about 7%. The impact is bi-modal with significant
spread over -5% to 2%. The upper end 2% performance benefit has
wide variance with 0 in the confidence interval (cf. Figure 6(c))
which is indicative of noise rather than a consistent pattern of IPC
improvement.

The performance variability is within typical inter-platform per-
formance variations seen in a WSC. Over various such studies,
we see even the median impact ranges considerably, reflecting the
inherent challenge of design evaluation on dynamic production
workloads in a diverse fleet.

Figure 6(c) shows a per-application IPC difference for the largest
applications comprising half of the total usage differentiated by
application class. The jobs in control and experiment groups are
matched and the % performance difference is calculated in aggre-
gate for each. The horizontal line for each job shows the 95% confi-
dence interval. The purple line at -5% shows the performance target.
The green line at -2.3% shows aggregate IPC impact weighted by
compute footprint. Note the log vertical scale reflecting the vast
diversity in job size even after filtering for the largest jobs, and
the substantial variation even for individual jobs. We monitored
application-level performance metrics and observed the trends to
be inline with the IPC distribution. While individual jobs may be
treated as benchmarks to indicate the potential impacts of tiered

733



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Padmapriya Duraisamy, et al.

(a) CDF and PDF of tier2 access ratio (b) CDF and PDF of weighted application
IPC difference relative to 1-tier machines

−16% −8% 0% 8%
Performance Difference

1

2
3
5

10

20
30
50

100

Jo
b
 C

P
U

 L
im

it

HILS
non-HILS

(c) Weighted application IPC difference relative
to 1-tier machines by application classes

Figure 6: Overall performance impact of 2-tier memory.

Figure 7: Bandwidth consumption of promotions, demo-
tions and application accesses to tier2.

memory, the large variation means that population studies are nec-
essary to determine the actual impact. Further, tail performance
impact variability is critical for HILS applications and even more
subtle to evaluate. We later discuss strategies to mitigate the tail.

Figure 8: Tier2 performance impact and overheads.

Figure 8 breaks down the aggregate performance impact and
TMTS overheads in a larger study on 1000 2-tier machines over
a different 4 weeks, showing an aggregate performance impact
of 3.5%. This degradation is larger than that in the smaller study
above, but within target and expected variation. Some impact due to
increase in latency is expected, given the 3.5x higher miss penalty
on an L3 cache miss to tier2, but TMTS migrations keep it quite low.
However, the increase in data translation lookaside buffer (TLB)
misses and the tier1 DRAM latency increase deserves attention.

5.4.1 TLB Misses and Huge Pages. Huge pages (e.g. 2MB) mitigate
the virtual-to-physical address translation latencies and TLB cov-
erage problem posed by 4KB pages. But these sizes introduce a
new challenge to page-migration based tiered memory systems.
Migration results in TLB invalidations due to changes in address
mappings. Additionally, a small hot region in a hugepage causes
the entire page to appear hot.

In the current implementation, objects are initially allocated in
tier1. If TMTS identifies a hugepage as a demotion candidate, the
page is first split into 4KB pages and then demoted. This allows
future accesses to promote individual 4KB pages and reduces migra-
tion cost and unnecessary occupancy of tier1. Not all demoted 4KB
pages of an original hugepage may get promoted thus preventing
them from successfully recombining into a hugepage.

However, "mostly cold" hugepages may never demote, reducing
tier2 utilization and diluting tier1. This is exacerbated by optimiza-
tions to encourage high hugepage coverage (e.g. [27]), which im-
prove performance but also increase the challenge of cold memory
identification and migration.

Since the system has lower DRAM capacity, we see an increase
in DRAM pressure, which fragments tier1. This reduces available
2MB blocks and translates to a lower hugepage coverage for the
working set on 2-tier machines relative to the 1-tier ones. The re-
sulting hugepage coverage is approximately 30% on 2-tier machines,
versus 45% coverage on 1-tier machines. Note that the portion of
the hugepage coverage gap related to cold pages being backed by
4KB pages is inconsequential to performance. However, the impact
in hugepage coverage loss to application working sets can be seen
in an increase of 7% in TLB misses on 2-tier machines compared to
1-tier machines, corroborating the causal explanation of the 1.5%
impact.

To address the lower hugepage coverage and increase in TLB
misses, we ran two experiments, both of which increased TLB hit
rates with minimal side effects. First, we tried migrating hugepages
intact, without breaking them apart into 4KB pages on demotion.
This reduced TLB misses by 4.7% on average, and improved av-
erage performance by 0.5%. Promotion bandwidth was increased
as expected, but by <1%, and without an increase in bandwidth
congestion events. Average STRR was decreased by <1%. Second,
we increased the aggressiveness of memory compaction, with the
goal of increasing the rate of recombination of 4KB pages in tier1.
We found that hugepage coverage was increased by 25% with an

734



Towards an Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

average performance improvement of 0.5%. The additional CPU
cost was trivial at < 0.1%.

We explore more potential solutions to some of these issues in
Section 8.3.

5.4.2 DRAM Latency Increase and Bandwidth Interference. Increase
in DRAM latency results in 1.5% performance impact. When the
Cascade Lake Optane DIMM controller’s buffer becomes full, the
current hardware implementation causes it to stall the memory
channel shared with other DRAM devices [57]. This in turn inter-
feres with other channels on the socket. More recent Optane Series
200 provide greater bandwidth per module and partial mitigation.
We expect the introduction of CXL-based memory [1] to mitigate
this impact.

5.4.3 System Overheads. The TMTS stack performs three key op-
erations that add about 1% in system overhead - demotions, page
scans and hot page detection+promotion (ufard) - and contribute to
machine utilization. These overheads are typically absorbed asWSC
servers operate below 100% utilization to improve predictability
and meet SLOs. The increased utilization can potentially result in
the Borg scheduler steering work elsewhere. This effect is reflected
in the observed overall task capacity of the cluster, even though
due to scheduling dynamics, it cannot be isolated on a per-machine
basis.

6 EVALUATING POLICIES
The analysis of STAR, STRR, and cluster-wide performance impact
above establishes how our demotion, promotion, and remote socket
policies meet the joint objective of less than 5% degradation with
25% DRAM replacement. This section discusses the development of
the baseline policy, i.e., the results above reflect the behavior of the
final policies described here. Unless noted separately, we applied
each policy to a slice of 300 machines spread across 6 clusters for a
2-week duration.

6.1 Demotion Policies
Increasing the cold age threshold for demotion decreases available
cold page demotion opportunities, but also decreases scan over-
heads and TLB impact. The demotion policy goal therefore is to
determine the coldest point that ensures a sufficient STRR. We
evaluated several static policies to establish a baseline for the sys-
tem and set the stage for future work in application-specific and
dynamically-adaptive policies.

We evaluate the following static policies. 2m represents an ag-
gressive threshold whereas 8m a conservative one.

• 2m_2m: A single static demotion age of 2 minutes for all
classes.

• 8m_2m: A static demotion age of 8 minutes for HILS and 2
minutes for non-HILS.

The CDF of tier2 access ratio in Figure 9(a) shows that with a
2m_2m policy, HILS applications enter the congestion threshold of
1.5% STAR even at P80, while few non-HILS experience such a high
STAR. The 8m_2m policy brings HILS STAR on par with non-HILS
and within target range: median and P95 STAR reduce by 46% (from
0.35% to 0.19%) and 39% (from 2.35% to 1.43%) respectively.

(a) CDF of tier2 (b) PDF of tier2

Figure 9: Distribution of tier2 access ratio and tier2 resi-
dency ratio under 2m_2m and 8m_2m demotion policies.

Figure 9(b) shows that we maintain residency with the stricter
cold criteria for HILS, although with a slight decrease, about 1.1% at
the median. Applying a simple application class specific demotion
policy meets our performance targets while allowing sufficient cold
pages to be demoted.

6.2 Promotion Policies
Promotion policies involve subtle trade-offs scarcely considered in
prior literature. Fault-based approaches like zswap[32, 52] promote
immediately on first access. Non-faulting approaches enabled by
a directly addressable tier2 allows the application to continue ex-
ecution while accessing (and caching) no-longer-cold tier2 pages.
These accesses may experience high miss penalties and induce
interference.

We lack a hardware mechanism to directly detect such tier2
bursts. Promotion dynamics differ greatly from demotion. Since
cold pages have been cold for a long time and are likely to continue
to be cold, these pages have little sensitivity to demotion timing.
However, a newly referenced page is likely to be referenced again
soon and frequently.

While basic policies leverage the scan process used for demotion,
memory access event sampling ensures timeliness of promotions
(Section 3.2). We examine three policies and show the importance
of fast detection.

• 60s: Promote pages with memory accesses detected in 2
subsequent 30-second page scans.

• 30s: Promote pages with amemory access detected in a single
30-second page scan.

• 60s+PMU: Promote pages with any access detected using
PMU-based sampling OR with page accesses detected in 2
subsequent 30-second page scans.

Promotion latency is the time between a tier2 access and sub-
sequent promotions to tier1. Figure 10 shows the CDF of the pro-
motion latencies for the three promotion policies. The 30s and
60s policies exhibit approximately linear sections expected under
evenly distributed wait times between memory accesses. PMU-
based monitoring triggers promotions much sooner, especially at
median, with 50% of promotions latencies <1 second, compared
to about 13 seconds (30s policy) and about 25 seconds (60s policy)
respectively.

Figure 11 shows the promotion policy impact to STRR and STAR
metrics. All policies maintain the target residency. The aggressive

735



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Padmapriya Duraisamy, et al.

Figure 10: CDF of promotion latencies under different poli-
cies.

(a) CDF of tier2 (b) PDF of tier2

Figure 11: Distribution of tier2 access ratio and tier2 resi-
dency ratio under different promotion policies.

30s policy reduces the amount of memory eligible to be demoted by
10% compared to the 60s policy. The 60s+PMU policy preferentially
detects and promotes hotter pages quicker than the conservative
60s. PMU-based promotions decreases STAR by 45% at the median
and 44% at P95, compared to the 60s policy alone and is superior to
the 30s policy.

6.3 Remote Socket Policies
Multi-socket servers add additional complexity to policy consid-
eration. While we disallow remote socket demotions (Section 3.4,
referred to as NUMA jailing hereafter), we verify this decision by
observing behavior when we disable NUMA jailing on 300 experi-
mental machines in a cluster. Figure 12 shows the PDF of memory
access latency to tier1 DRAM under the two NUMA policies. While
median DRAM access latency is roughly similar across the two
machine sets, tail latency is significantly elevated (by orders of
magnitude) when remote demotion is permitted. The effects were
so pronounced that we observed a significant elevation in kernel
soft lockups due to excessive slowdown and had to rollback this
configuration within a few days to avoid impact to production
services.

7 TWO APPLICATION CASE STUDIES
To see beyond aggregate workload behaviors, this section picks
out two specific applications to demonstrate the unique challenges
posed by the diversity in a WSC. The first is Spanner[15], a dis-
tributed relational database service with in-memory caches that
serves millions of operations per second and is in the critical path
of many latency sensitive production services. The second is a

Figure 12: PDF of DRAM access latency in nanoseconds un-
der NUMA jailing enabled and NUMA jailing disabled poli-
cies.

throughput-oriented machine learning training pipeline built us-
ing the TensorFlow framework [6], with high memory bandwidth
usage and unpredictable access patterns.

7.1 Database Application
Spanner is a distributed database application that runs at the HILS
application class. Much of Spanner’s memory footprint is used for
caching. Most cache entries are accessed relatively rarely, so this
data is a good candidate for tier2 memory. The remaining fraction
of Spanner’s memory is part of its "control plane", used for metadata
that is accessed for nearly every request. This data must be kept
in tier1 for latency reasons. We expect Spanner’s access patterns
are similar to open source databases like CockroachDB [46] or
Cassandra [33], which use similar storage engines to Spanner.

Figure 13 shows a time series of our key metrics from task repli-
cas of this application running on experimental and control ma-
chines in one cluster over a period of one week. As expected, it
demonstrates a consistently low STAR of 0.5% (within our target)
while enabling identification of significant cold memory pages suit-
able for demotion. It can support a higher than expected STRR
(>25%) which increases tier2 utilization. It sees an average IPC
impact of 2.5% with tail latency impact at 4.5%, well below the ag-
gregate impact observed across all HILS applications. The stable
tier2 residency ratio makes estimating tier2 demand easy.

7.2 Machine Learning Application
The machine learning application is a throughput-oriented training
pipeline that makes frequent updates to the ML model in memory
during the training phase. The in-memory data stored by this ap-
plication can be dense or sparse depending on how much of it is
required to update the ML model that is currently being trained.
TheseMLmodel updates are memory bandwidth intensive and their
memory access patterns are unpredictable because the application
is optimized to efficiently read the training data from disk into mem-
ory as opposed to optimizing for locality of the in-memory accesses.
Any slowdowns to a single instance of the training worker could
slow down the entire training phase of the application leading to
wasted CPU and accelerator cycles.

This application poses a challenge to our system because the
tier2 bandwidth is a poorly-isolated and constrained resource. The
unpredictable access patterns prevent the tiering stack from staying
ahead of bandwidth congestion events driven by burst of tier2

736



Towards an Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

(a) tier2 access ratio (b) tier2 residency ratio (c) Application IPC impact

Figure 13: Distribution of tier2 access ratio, tier2 residency ratio and IPC impact over time for task replicas of a database
application and a machine learning application.

accesses. Figure 13 shows a time series of our key metrics collected
from replicas of this application running across experimental and
control machines over a period of one week. It has a noticeably
elevated STAR and significant variance in access rate, which is
reflected in the large IPC impact, sometimes even 50% degradation.
It also demonstrates a highly variable tier2 residency ratio ranging
all the way from 0% to >50%. This degree of variability makes this
application unfriendly for using tier2. Additionally, this application
contributed to >80% of severe bandwidth saturation events on all
experimental machines making it a noisy neighbor on multi-tenant
systems.

8 ADAPTIVE POLICIES TO TACKLE WSC
SCALE

While the deployed TMTS meets performance targets for most
applications, several outliers experience significant performance
degradation, shown in Figure 6(c). The case studies above demon-
strate the diverse mix of cold memory access patterns typical to our
computing environment. To scale tiering in such an environment,
we must enable vertical integration across the node, cluster and ap-
plication layers and develop policies that collectively enable higher
cold memory identification with minimal performance degradation.
This section discusses three adaptive policies that enabled scaling
TMTS.

8.1 Secondary Tier Access Directed Demotions
The analyses above highlight the need to limit STAR bursts in
order to reduce the impact to tail performance. Policies evaluated in
Section 6 use relatively simple criteria to select pages for demotion,
but do not adapt to potentially detrimental conditions. This section
outlines adaptive policies to maintain STAR within a target range
in an online manner.

Lagar-Cavilla et al [32] describe a dynamic, per-application cold
age threshold policy that seeks to maintain a target promotion rate.
We use a similar approach, though the differences are deeply rooted
in the underlying mechanism. For swap based secondary tiers, the
application impact occurs entirely on first access to a page after
being demoted. This causes a fault that suspends the instruction
for the duration of the page load or decompression. Subsequent
accesses are to faster DRAM. With a direct-access secondary tier,
the first access is a longer-latency cache miss rather than a fault,
and further accesses may pay a cost until the page is promoted.

Moreover, promotion detection relies on completely asynchronous
page access monitoring.

To build policies, we augment the cold age histogram passed to
ufard with a promotion histogram based on the periodically mon-
itored PMU counters to estimate the potential STAR for each ap-
plication at various cold ages. A simple control loop periodically
determines the smallest demotion age that permits STAR to remain
within target. To obtain a stable threshold and avoid page thrash-
ing, the history of demotion ages is tracked to choose the K-th
percentile age for each cycle. Early results from deploying this pol-
icy to 200 experimental machines in one cluster with a target STAR
of 0.5% demonstrated high effectiveness in reducing the number of
bandwidth saturation events (by >50%).

Future work would identify additional environmental signals
to incorporate (such as tier2 bandwidth saturation). As some ap-
plications exhibit time varying access patterns, the target range
itself can be specific to the application and adjustable. Driving de-
motion decisions from userspace enables such application-specific
optimizations while also allowing for rapid iterations over the pa-
rameter space.

8.2 Secondary Tier Aware Cluster Scheduling
The diverse nature of applications in a WSC requires solutions
specifically to tackle variability. The scheduler assigns tasks to ma-
chines based on resource availability. The Borg scheduler runs two
phases - feasibility checking, to find the set of machines where the
task is able to fit and run and scoring, which picks the best among
feasible machines. If the cluster scheduling policy is oblivious to
tier2, it may produce suboptimal task placements, such that cold
memory across tasks co-located on a given machine is insufficient
to occupy the deployed tier2 capacity so the resource is stranded.
However, the scheduler operates over time scales that are signif-
icantly larger than variations of STAR. Moreover, the scheduler
needs to maintain tight SLOs on scheduling latency while manag-
ing hundreds of tasks per machine [48], each with unique access
patterns and tens of thousands of machines per cluster with hetero-
geneous tier2. TMTS employs an end to end solution to maintain
overall application SLOs by distributing responsibilities between
node and scheduler layers.

The node agent, Borglet, can observe and quickly respond to ap-
plication performance impact. Borglet is also aware of the specific
performance capabilities of the tier2 hardware. Thus it maintains
the responsibility to protect the performance SLOs of the applica-
tions that are collocated on a given machine under the constraints

737



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Padmapriya Duraisamy, et al.

of the tier2 hardware provisioned on that machine. By employing
the demotion policy described in 8.1, Borglet in conjunction with
ufard maintains STAR within expected range for each application.
If a machine starts to run out of sufficient tier1 capacity to fit the
hot workingset of the scheduled tasks, Borglet temporarily signals
to the scheduler to reduce load. Similarly, if the combined band-
width usage across different tasks on a machine exceeds the tier2
bandwidth capacity (even if each task’s STAR is within permis-
sible thresholds), it can result in tail performance impact due to
bandwidth congestion. If there is a persistent congestion situation
detected on a machine, Borglet notifies the scheduler to evict tasks
in an SLO-safe manner.

For reliability purposes, Borglets do not communicate with one
another directly. Thus, the scheduler is the only entity that has a
centralized view of all machines and available workload in a clus-
ter. It has the responsibility of optimal workload collocation. We
introduce scheduling hints, a workload segmentation mechanism
to guide the Borg scheduler to preferentially schedule some jobs
(and conversely, avert some jobs) on machines with tier2 memory.
An offline pipeline uses historical analysis of cold memory access
patterns and performance by jobs to determine jobs suitable to use
tiered memory systems versus unsuitable ones, (e.g., access patterns
that make them noisy neighbors or extreme sensitivity to latency.)
We use tier2 usage ratio and tier2 bandwidth usage as criteria to
categorize jobs as friendly, unfriendly and neutral. Friendly jobs
are preferred to schedule on 2-tier machines while unfriendly jobs
are preferred to schedule on 1-tier machines. Neutral jobs are ap-
plied the same scheduling policy as in Section 5. Deploying these
heuristics, we observed on average about 17% of jobs in a cluster
to be unfriendly and about 20% of jobs to be friendly. The fraction
of friendly and unfriendly jobs varies across different clusters, as
shown in Figure 14. Note that these hints are applied as a best
effort policy and sometimes the scheduler can’t follow them due to
stronger constraints such as CPU and RAM capacity. This design
choice was made to prevent risk of violating job scheduling SLOs
which are higher priority than potential tail performance concerns.

0%

10%

20%

30%

40%

C1 C2 C3 C4 C5

Tiering-friendly CPU footprint Tiering-unfriendly CPU footprint

Figure 14: Distribution of tiering-friendly and unfriendly
job footprints by cluster.

During the scoring phase of the scheduler, a tag applied by the
offline pipeline is considered in addition to existing scheduling
criteria to determine the best workload mix for each machine. The
offline pipeline runs continuously to update the tags in response
to changes in workload behavior over time and any tag changes
are pushed to the scheduler via existing automation at a prede-
termined cadence. Additionally, the scheduler considers the tier1
utilization of machines to spread the hot workingset more evenly
across machines to reduce the likelihood of node memory pressure.

Early experiments with the above scheduling policies applied to
600 machines in 1 cluster demonstrated (Figure 15) a 30% reduction
in STAR resulting in a 4% improvement in performance for latency
sensitive workloads relative to machines with tier2 that did not
have these policies applied.

STRR being maintained within expected range is critical at the
cluster level while making deployment decisions due to implications
on resource stranding. While no scheduling or demotion policy
optimizes for a specific STRR in real time, provisioning decisions
are made by simulating the combined set of policies to determine
the optimal mix of tier1 and tier2 capacities to deploy to each cluster
to maximize TCO savings considering stranding implications.

(a) CDF of tier2 (b) PDF of tier2

Figure 15: Distribution of tier2 access ratio and tier2 resi-
dency ratio with and without scheduling hints.

8.3 Application-Hinted Cold Memory
Allocation

Section 5.4 discusses the interplay of hugepages andmemory tiering,
especially for mostly cold hugepages. Initially, the Spanner database
exhibited 10% cold memory due to the collocation of hot and cold
objects within a hugepage, preventing it from being identified as
cold. To avoid collocating hot and cold objects, we extended the
new operator to accept a hint parameter indicating how frequently
accessed the allocated object is expected to be. The open-source
TCMalloc implementation [4] for the C++ memory allocator uses
this parameter to separate “cold” and “hot” allocations in the virtual
address space. Since infrequently accessed objects were clustered
onto pages together, the kernel could be advised to not map cold
regions with transparent hugepages. These strategies lead to a
separation of frequently accessed and infrequently accessed objects
and distinct policies for each.

We annotated 2 allocation sites with the cold hint parameter in
Spanner, which resulted in an increase of cold memory identifica-
tion from 10% to 42%. More densely packing frequently accessed
allocations reduced the number of TLB entries required to span
the working set, simultaneously reducing query latency by 2% by
reducing TLB misses.

We believe similar approaches that use software hints to help
shape memory allocation and object placements within pages will
be increasingly important. For example, in addition to developers
annotating allocations within applications as likely hot or cold,
the compiler may use automated techniques such as profile-guided
optimizations to provide similar hints.

738



Towards an Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

9 RELATEDWORK
Tiered memory systems. Intel Optane memory mode [2] imple-
ments OS-transparent tiered memory systems in hardware, on
which software cannot customize tiering policies for various appli-
cations. [38, 42, 51] are hardware-assisted tiered memory systems,
which are evaluated in simulation. [7, 24, 26, 29, 31, 37, 56, 58] man-
age tiered memory systems transparently to applications at the
OS level, similar to our system. Nimble [56] focuses on optimizing
migration of hugepages. HeteroOS [29] provides heterogeneous
memory to guest OS and coordinates guest OS and VMM for page
placement. Thermostat [7] uses page sampling to classify pages as
hot or cold. [24, 26, 31, 37] extends page reclaim to demote cold
pages in lieu of swapping, whereas our system applies demotion age
policies specific to each application class. [24, 26, 31, 37, 58] also ex-
tends Linux NUMA balancing page migration to promote hot pages
on minor hinting page faults. Such page fault based techniques
can detect access to tier2 pages more quickly than A-bit scanning
and memory access sampling, though at the cost of increased page
faults and TLB invalidations, particularly for repeated page faults
that these techniques incur when they don’t always promote tier2
pages on the first access. AutoTiering [31] uses Optane as tier2
memory, while [7, 29, 37, 56, 58] are evaluated with emulated tier2
memory, which does not accurately reflect the performance impact
of slower memory tiers. None of these systems are evaluated with
production workloads in warehouse-scale data centers.

There are tiered memory systems managed at application or
library levels, such as X-Mem [20], Unimem [53], AIFM [44], and
pVM [30], which rely on custom memory APIs and software modifi-
cations. Among them, HeMem [43] is similar to our system in using
Optane as tier2 memory and PEBS to track hot pages on Optane
for promotion. Many techniques in these approaches, such as pro-
filing [20, 51, 53], custom allocations and prefetching [10, 36], can
be leveraged to optimize application performance in our system,
similar to allocation hints in Section 8.3.
Swap-based far memory. Using swap to extend memory is well
known. The swap target can be in-memory compression [32, 52],
local disks [52], or remote devices via RDMA [8], Infiniband [23], or
other interconnects. Cold page identification techniques [17, 41, 59]
for page reclaim and swap are applicable to memory tiering as well.
Some feedback techniques to control swap aggressiveness, such as
PSI [52], may also be extended to be applicable to direct-accessed
tiered memory systems. The order of magnitude difference in access
latency between swap devices and slow tier memory demands
different page placement policies as well.
Disaggregated memory. Many recent software runtime efforts
for disaggregated memory [11, 45] are designed for RDMA over
network, which has an order of magnitude higher latency than
tiered memory attached directly or via CXL.mem. DirectCXL [22]
and Pond [34] extend memory in a machine with rack-scale dis-
aggregated memory via CXL.mem. Such hardware systems can be
configured to be either a non-tiered memory system for capacity
and bandwidth expansion [22] or a tiered memory system which
our tiering software can be applied to. Moreover, Pond studies 158
applications in isolation, whereas we evaluate our system with over
100K applications in a dynamic production setup.
Cluster scheduling policies. Large scale clustermanagers such as
Mesos [25], Twine [47], YARN [49] and Borg [50] can schedule jobs

across a large number of heterogeneous machines to optimize the
efficiency of data centers. These cluster managers can optimize their
scheduling policies to take into account the differences between
memory tiers as illustrated in Section 8.2.

10 CONCLUDING REMARKS
This paper presents the first comprehensive analysis of a non-
faulting tiered memory system deployed at scale in a warehouse-
scale environment successfully serving production services across
different application classes. We demonstrated the effectiveness of
adaptive policies and hardware-assisted event profiling. Our ex-
perience highlighted the complexity of successfully managing a
multi-tenant tiered memory deployment at scale in the presence
of a diverse set of application services with varying SLO require-
ments. We expect the adaptive nature of techniques proposed in
this paper built on solid foundational metrics to apply to future
systems independent of how their latency and bandwidth profiles
evolve and the interface they support (e.g., CXL). Future system
parameters may indeed change STAR/STRR targets allowing for
more aggressive demotions and higher tier-2 replacement ratios.

We have presented a data point in a spectrum of different solu-
tions possible. The ever changing application space, usage models,
and hardware technologies - both in media and interfaces will re-
quire further innovations in scalable memory tiering management.
We expect a rich set of alternatives for cheaper tiers with different
bandwidth and latency profiles, even with the discontinuation of
Optane. New hardware mechanisms may enable rapid, accurate
identification of promotion candidates. New approaches to object
allocation, i.e., new, may dramatically reduce access fragmentation,
thereby changing the trade-offs in the use of large/huge pages and
even the hardware design points.

We hope our work provides a strong foundation for further
innovation around future cluster-level tiering-aware scheduling
policies.

ACKNOWLEDGEMENTS
The results presented in this paper build on the work of a great
larger team at Google and we are grateful to all our colleagues
involved in the design and operation of the systems that we dis-
cuss in this paper. In particular, we would like to thank Aleksandr
Savchenkov, Biswa Panda, Brad Strand, Christian Warloe, Jennifer
Mansur, Jesus Francisco Anaya Gonzalez, Kristine Jassmann, Lai
Nguyen, Laura Xu, Linlin Li, Md Kamruzzaman, Peng Gu, Ravi
Kavuri, Srividhya Balaji, Todd Lipcon, Yili Zheng and Zach O’Keefe
for their invaluable contributions. We would also like to thank Eric
Brewer, Hank Levy, Danner Stodolsky, the anonymous reviewers,
as well as our shepherd for their feedback on the paper.

REFERENCES
[1] [n. d.]. Compute Express Link (CXL). https://www.computeexpresslink.org/.
[2] [n. d.]. Intel Optane Persistent Memory. https://www.intel.com/content/www/us/

en/products/docs/memory-storage/optane-persistent-memory/overview.html.
[3] [n. d.]. Linux Kernel BPF Documentation. https://docs.kernel.org/bpf/index.html.
[4] [n. d.]. TCMalloc new Extension. https://github.com/google/tcmalloc/blob/

master/tcmalloc/new_extension.h.
[5] 2020. CXL And Gen-Z Iron Out A Coherent Interconnect Strat-

egy. https://www.nextplatform.com/2020/04/03/cxl-and-gen-ziron-out-a-
coherent-interconnect-strategy/.

739

https://www.computeexpresslink.org/
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://docs.kernel.org/bpf/index.html
https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h
https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h
https://www.nextplatform.com/2020/04/03/cxl-and-gen-ziron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-ziron-out-a-coherent-interconnect-strategy/


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Padmapriya Duraisamy, et al.

[6] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI). 265–283. https://doi.org/10.5555/3026877.3026899

[7] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-
Transparent Page Management for Two-Tiered Main Memory. In Proceedings of
the 22nd International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). https://doi.org/10.1145/3037697.3037706

[8] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-
hout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.
2020. Can far memory improve job throughput?. In Proceedings of the 15th Euro-
pean Conference on Computer Systems (EuroSys). https://doi.org/10.1145/3342195.
3387522

[9] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The Datacenter as
a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second
Edition. http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024

[10] Christopher Branner-Augmon, Narek Galstyan, Sam Kumar, Emmanuel Amaro,
Amy Ousterhout, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. 2022.
3PO: Programmed Far-Memory Prefetching for Oblivious Applications. https:
//arxiv.org/abs/2207.07688.

[11] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf,
Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking software runtimes for dis-
aggregated memory. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS). https://doi.org/10.1145/3445814.3446713

[12] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020.
FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the 25th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). https:
//doi.org/10.1145/3373376.3378515

[13] Edward G. Coffman and Peter J. Denning. 1973. Operating Systems Theory.
Prentice Hall Professional Technical Reference.

[14] Douglas Comer and Jim Griffioen. 1990. A New Design for Distributed Systems:
The Remote Memory Model. In USENIX Summer.

[15] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Transactions on Computer Systems 31 (2013), 8. https://doi.org/
10.1145/2491245

[16] Intel Corporation. 2023. Intel 64 and IA-32 Architectures Software Developer’s
Manual. https://software.intel.com/articles/intel-sdm.

[17] Vladimir Davydov. 2015. Idle memory tracking. https://lwn.net/Articles/643578/.
[18] The Linux Kernel Documentation. [n. d.]. Linux Memory Management Docu-

mentation - Page Migration. https://www.kernel.org/doc/html/v5.15/vm/page_
migration.html.

[19] Paul J. Drongowski. 2007. Instruction-Based Sampling: A New Performance
Analysis Technique for AMD Family 10h Processors. https://developer.amd.com/
wordpress/media/2012/10/AMD_IBS_paper_EN.pdf.

[20] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. 2016. Data
tiering in heterogeneous memory systems. In Proceedings of the 11th European
Conference on Computer Systems (EuroSys). https://doi.org/10.1145/2901318.
2901344

[21] Mel Gorman. [n. d.]. Understanding the Linux Virtual Memory Manager -
Page Frame Reclamation. https://www.kernel.org/doc/gorman/html/understand/
understand013.html.

[22] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.
Direct Access, High-Performance Memory Disaggregation with DirectCXL. In
Proceedings of the USENIX Annual Technical Conference (USENIX ATC). https:
//www.usenix.org/conference/atc22/presentation/gouk

[23] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G.
Shin. 2017. Efficient Memory Disaggregation with Infiniswap. In Proceedings of
the 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI). https://doi.org/10.5555/3154630.3154683

[24] Dave Hansen. 2020. Migrate Pages in lieu of discard. https://lwn.net/Articles/
824830/.

[25] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for
Fine-grained Resource Sharing in the Data Center. In Symposium on Networked
Systems Design and Implementation (NSDI). https://doi.org/10.5555/1972457.
1972488

[26] Ying Huang. 2019. autonuma: Optimize memory placement in memory tiering
system. https://lwn.net/Articles/803663/.

[27] A.H. Hunter, Jane Street Capital, Chris Kennelly, Paul Turner, Darryl Gove, Tipp
Moseley, and Parthasarathy Ranganathan. 2021. Beyond malloc efficiency to
fleet efficiency: a hugepage-aware memory allocator. In Proceedings of the 15th
USENIX Conference on Operating Systems Design and Implementation (OSDI).

[28] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic Performance Measurements of the Intel Optane DC Persistent Mem-
ory Module. CoRR abs/1903.05714 (2019). arXiv preprint arXiv:1903.05714 (2019).

[29] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
HeteroOS: OS Design for Heterogeneous Memory Management in Datacenter. In
Proceedings of the 44th Annual International Symposium on Computer Architecture
(ISCA). https://doi.org/10.1145/3079856.3080245

[30] Sudarsun Kannan, Ada Gavrilovska, and Karsten Schwan. 2016. pVM: persistent
virtual memory for efficient capacity scaling and object storage. In Proceedings of
the 11th European Conference on Computer Systems (EuroSys). https://doi.org/10.
1145/2901318.2901325

[31] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring the Design
Space of Page Management for Multi-Tiered Memory Systems. In USENIX Annual
Technical Conference (USENIX ATC).

[32] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Ra-
doslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Ju-
naid Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy
Ranganathan. 2019. Software-Defined Far Memory in Warehouse-Scale Comput-
ers. In Proceedings of the 24th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS). https:
//doi.org/10.1145/3297858.3304053

[33] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-
tured Storage System. SIGOPS Operating Systems Review 44, 2 (apr 2010), 35–40.
https://doi.org/10.1145/1773912.1773922

[34] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst, Pantea
Zardoshti, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). https://doi.org/10.48550/ARXIV.2203.00241

[35] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated memory for expansion
and sharing in blade servers. In Proceedings of the 36th annual international
symposium on Computer architecture (ISCA). https://doi.org/10.1145/1555754.
1555789

[36] Hasan Al Maruf and Mosharaf Chowdhury. 2020. Effectively Prefetching Remote
Memory with Leap. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC). https://doi.org/10.5555/3489146.3489204

[37] HasanAlMaruf, HaoWang, AbhishekDhanotia, JohannesWeiner, Niket Agarwal,
Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. 2023. Aqua: Transparent Page Placement for CXL-Enabled
Tiered Memory. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS).
https://doi.org/10.48550/ARXIV.2206.02878

[38] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Igna-
towski, and Gabriel H. Loh. 2015. Heterogeneous memory architectures: A
HW/SW approach for mixing die-stacked and off-package memories. In IEEE
21st International Symposium on High Performance Computer Architecture (HPCA).
https://doi.org/10.1109/HPCA.2015.7056027

[39] Feeley Michael J, Wdliam E. Morgan, Frederic H. Pighin, Anna R. Karlin, and
Henry M. Levy. 1995. Implementing Global Memory Management in a Worksta-
tion Cluster. In ACM SIGOPS Operating Systems Review. https://doi.org/10.1145/
224057.224072

[40] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In Proceedings of the International Conference on
Management of Data. https://doi.org/10.1145/2882903.2915251

[41] SeongJae Park. 2020. Introduce Data Access MONitor (DAMON). https://lwn.
net/Articles/834721/.

[42] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page placement
in hybrid memory systems. In Proceedings of the International Conference on
Supercomputing (ICS).

[43] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter. 2021.
HeMem: Scalable Tiered Memory Management for Big Data Applications and
Real NVM. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP). https://doi.org/10.1145/3477132.3483550

[44] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. 2020.
AIFM: High-Performance, Application-Integrated Far Memory. In Proceedings of
the 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). https://doi.org/10.5555/3488766.3488784

[45] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A
Disseminated, Distributed OS for Hardware Resource Disaggregation. In 13th

740

https://doi.org/10.5555/3026877.3026899
https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1145/3342195.3387522
https://doi.org/10.1145/3342195.3387522
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
https://arxiv.org/abs/2207.07688
https://arxiv.org/abs/2207.07688
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
https://software.intel.com/articles/intel-sdm
https://lwn.net/Articles/643578/
https://www.kernel.org/doc/html/v5.15/vm/page_migration.html
https://www.kernel.org/doc/html/v5.15/vm/page_migration.html
https://developer.amd.com/wordpress/media/2012/10/AMD_IBS_paper_EN.pdf
https://developer.amd.com/wordpress/media/2012/10/AMD_IBS_paper_EN.pdf
https://doi.org/10.1145/2901318.2901344
https://doi.org/10.1145/2901318.2901344
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.usenix.org/conference/atc22/presentation/gouk
https://www.usenix.org/conference/atc22/presentation/gouk
https://doi.org/10.5555/3154630.3154683
https://lwn.net/Articles/824830/
https://lwn.net/Articles/824830/
https://doi.org/10.5555/1972457.1972488
https://doi.org/10.5555/1972457.1972488
https://lwn.net/Articles/803663/
https://doi.org/10.1145/3079856.3080245
https://doi.org/10.1145/2901318.2901325
https://doi.org/10.1145/2901318.2901325
https://doi.org/10.1145/3297858.3304053
https://doi.org/10.1145/3297858.3304053
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.48550/ARXIV.2203.00241
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.5555/3489146.3489204
https://doi.org/10.48550/ARXIV.2206.02878
https://doi.org/10.1109/HPCA.2015.7056027
https://doi.org/10.1145/224057.224072
https://doi.org/10.1145/224057.224072
https://doi.org/10.1145/2882903.2915251
https://lwn.net/Articles/834721/
https://lwn.net/Articles/834721/
https://doi.org/10.1145/3477132.3483550
https://doi.org/10.5555/3488766.3488784


Towards an Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

USENIX Symposium on Operating Systems Design and Implementation (OSDI).
https://doi.org/10.5555/3291168.3291175

[46] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1493–1509. https://doi.org/10.1145/3318464.3386134

[47] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott
Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew Clark, Kabir Gogia,
Long Cheng, Ben Christensen, Alex Gartrell, Maxim Khutornenko, Sachin Kulka-
rni, Marcin Pawlowski, Tuomas Pelkonen, Andre Rodrigues, Rounak Tibre-
wal, Vaishnavi Venkatesan, and Peter Zhang. 2020. Twine: a unified clus-
ter management system for shared infrastructure. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation (OSDI).
https://doi.org/10.5555/3488766.3488811

[48] Muhammad Tirmazi, Adam Barker, Nan Deng, Md Ehtesam Haque, Zhijing Gene
Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes. 2020. Borg: the Next
Generation. In EuroSys’20. https://doi.org/10.1145/3342195.3387517

[49] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Sid-
dharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Ben-
jamin Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: Yet An-
other Resource Negotiator. In ACM Symposium on Cloud Computing (SOCC).
https://doi.org/10.1145/2523616.2523633

[50] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale Cluster Management at Google with
Borg. In Proceedings of European Conference on Computer Systems (EuroSys).
https://doi.org/10.1145/2741948.2741964

[51] Wei Wei, Dejun Jiang, Sally A. McKee, Jin Xiong, and Mingyu Chen. 2015.
Exploiting Program Semantics to Place Data in Hybrid Memory. In Interna-
tional Conference on Parallel Architecture and Compilation (PACT). https:
//doi.org/10.1109/PACT.2015.10

[52] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang,
Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang,
and Dimitrios Skarlatos. 2022. TMO: transparent memory offloading in dat-
acenters. In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).
https://doi.org/10.1145/3503222.3507731

[53] Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime data manage-
menton non-volatile memory-based heterogeneous main memory. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. https://doi.org/10.1145/3126908.3126923

[54] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index
Key-Value Store for DRAM-NVM Memory Systems. In Proceedings of the USENIX
Annual Technical Conference (USENIX ATC). https://doi.org/10.5555/3154690.
3154724

[55] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022. Char-
acterizing the Performance of Intel Optane Persistent Memory: A Close Look at
Its on-DIMM Buffering. In Proceedings of the Seventeenth European Conference on
Computer Systems (Rennes, France) (EuroSys ’22). Association for Computing Ma-
chinery, New York, NY, USA, 488–505. https://doi.org/10.1145/3492321.3519556

[56] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nim-
ble Page Management for Tiered Memory Systems. In Proceedings of the 24th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). https://doi.org/10.1145/3297858.3304024

[57] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In Proceedings of the 18th USENIX Conference on File and Storage Tech-
nologies (FAST). https://doi.org/10.5555/3386691.3386708

[58] Zhuohui Duan; Haikun Liu; Xiaofei Liao; Hai Jin; Wenbin Jiang; Yu Zhang. 2019.
HiNUMA: NUMA-Aware Data Placement and Migration in Hybrid Memory
Systems. In IEEE 37th International Conference on Computer Design (ICCD). https:
//doi.org/10.1109/ICCD46524.2019.00058

[59] Yu Zhao. 2022. Multi-Gen LRU Framework. https://lwn.net/Articles/904697/.

Received 2022-10-20; accepted 2023-01-19

741

https://doi.org/10.5555/3291168.3291175
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.5555/3488766.3488811
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1109/PACT.2015.10
https://doi.org/10.1109/PACT.2015.10
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/3126908.3126923
https://doi.org/10.5555/3154690.3154724
https://doi.org/10.5555/3154690.3154724
https://doi.org/10.1145/3492321.3519556
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.5555/3386691.3386708
https://doi.org/10.1109/ICCD46524.2019.00058
https://doi.org/10.1109/ICCD46524.2019.00058
https://lwn.net/Articles/904697/

	Abstract
	1 Introduction
	2 Considerations for Memory Tiering at Scale
	3 Base Architecture for TMTS
	3.1 Cold Page Detection and Demotion
	3.2 Promotion of Hot Pages
	3.3 Policy Management
	3.4 Policy Constraints due to Hardware Restrictions

	4 Evaluation Methodology
	5 Empirical Results
	5.1 Memory Utilization / Task Capacity
	5.2 Residency Ratios
	5.3 Access Ratios / Bandwidth
	5.4 Overall Performance Impact

	6 Evaluating Policies
	6.1 Demotion Policies
	6.2 Promotion Policies
	6.3 Remote Socket Policies

	7 Two Application Case Studies
	7.1 Database Application
	7.2 Machine Learning Application

	8 Adaptive Policies to Tackle WSC Scale
	8.1 Secondary Tier Access Directed Demotions
	8.2 Secondary Tier Aware Cluster Scheduling
	8.3 Application-Hinted Cold Memory Allocation

	9 Related Work
	10 Concluding Remarks
	References

