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ABSTRACT
Facebook’s graph store TAO, like many other distributed data stores,
traditionally prioritizes availability, efficiency, and scalability over
strong consistency or isolation guarantees to serve its large, read-
dominant workloads. As product developers build diverse applica-
tions on top of this system, they increasingly seek transactional
semantics. However, providing advanced features for select appli-
cations while preserving the system’s overall reliability and perfor-
mance is a continual challenge. In this paper, we first characterize
developer desires for transactions that have emerged over the years
and describe the current failure-atomic (i.e., write) transactions
offered by TAO. We then explore how to introduce an intuitive read
transaction API. We highlight the need for atomic visibility guaran-
tees in this API with a measurement study on potential anomalies
that occur without stronger isolation for reads. Our analysis shows
that 1 in 1,500 batched reads reflects partial transactional updates,
which complicate the developer experience and lead to unexpected
results. In response to our findings, we present the RAMP-TAO pro-
tocol, a variation based on the Read Atomic Multi-Partition (RAMP)
protocols that can be feasibly deployed in production with mini-
mal overhead while ensuring atomic visibility for a read-optimized
workload at scale.
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Figure 1: By separating availability and replication concerns
from stronger isolation guarantees, we can maintain high
performance while ensuring safety properties over data.

1 INTRODUCTION
TAO is a read-optimized, geo-distributed data store that provides
online social graph access for diverse product applications and other
backend systems at Facebook [21]. Each application-level request
can result in hundreds of reads andwrites to TAO. In aggregate, TAO
serves over ten billion reads and tens ofmillions of writes per second
on a changing data set of many petabytes. Like many other large
storage systems [2, 22, 23, 26, 41], TAO prioritizes availability, read
latency, and efficiency over strong data consistency and isolation
guarantees [45] for its demanding, read-dominant workload.

Originally, TAO focused on simple accesses to nodes and edges
in the social graph and provided no transactional APIs, reflecting its
goal of supporting a small feature set with high availability at mas-
sive scale. However, as applications shifted from directly accessing
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TAO to a higher-level query framework, Ent, which makes it easy
to express complex operations over the graph, product developers
have increasingly desired transactional semantics to avoid having
to handle partial failures. In response, TAO engineers implemented
failure-atomic write transactions (Section 2).

Similarly, adding support for read transactions would greatly
simplify the developer experience by directly enforcing application-
level invariants. Currently, under TAO’s eventual consistency, a
naïve batched query can observe fractured reads [17]—reads that
capture only part of a write transaction’s updates before these up-
dates are fully replicated. As we demonstrate in the first large-scale
measurement study of its kind, these anomalies occur 1 out of
every 1,500 read batches (Section 3). Given the size of TAO’s work-
load, this relatively modest rate is significant in practice. Moreover,
fractured reads are hard to detect in the application layer with an
asynchronously replicated system. These anomalies are burden-
some for developers to reason about and explicitly handle in order
to minimize end user impact.

By providing atomic visibility [17], or the guarantee that reads
observe either all or none of a transaction’s operations, we can intro-
duce a simple and intuitive read transaction API on TAO. However,
enabling these semantics presents significant challenges in practice.
Due to TAO’s scale and storage constraints, we want to avoid coor-
dination and minimize memory overhead. Our implementation of
atomic visibility must also be cache-friendly, hot-spot tolerant, and
extensible to different data stores. Moreover, we should only incur
overhead for applications that opt in (rather than requiring every
application to pay a performance penalty). Although we focus on
TAO in this work, these challenges apply to many other large-scale,
read-optimized systems [2, 41, 49].

In this paper, we introduce a new RAMP-TAO protocol (Sec-
tion 4), which layers atomic visibility on top of TAOwhile achieving
our performance goals above. While our work is inspired by the
Read Atomic Multi-Partition (RAMP) protocols [17], we address
several of their drawbacks. The original RAMP transactions impose
atomic visibility verification overhead on all reads, require substan-
tial metadata, and assume full support for multiversioning (which
TAO lacks). RAMP-TAO leverages the key insight that we only need
to guard against fractured reads for recent, transactionally-updated
data to reduce the overheads of ensuring atomic visibility.

Our layering strategy takes the “bolt-on” [18] approach to stronger
transactional guarantees (Figure 1). We prevent transactions from
interfering with TAO’s availability, durability, and replication pro-
cesses, retaining the reliability and efficiency of the system. Only
applications that need stronger guarantees incur the resulting per-
formance costs. Furthermore, our protocol exploits existing cache
infrastructure and requires minimal changes to TAO internals. Thus,
RAMP-TAO is effective for both providing default guarantees across
data stores and as a retroactive optimization for massive, read-
optimized systems, many of which have sought to strengthen their
isolation models [1, 4, 5]. We also describe an optimization of our
protocol for bidirectional associations (paired edges in the graph),
which represent a special case of failure-atomic transactions. These
data structures are ubiquitous in TAO, so any protocol providing
atomic visibility needs to be especially efficient for them.

We demonstrate that RAMP-TAO is feasible for production use
by benchmarking its latency and memory overheads (Section 5).

Figure 2: Subgraph for a hypothetical example.

Our prototype implementation provides atomic visibility in a read-
optimized environment with one round trip for greater than 99.93%
of reads and a modest 0.42% increase in memory overhead.

In summary, we make the following contributions in this paper:
• We report on developer challenges and needs for transactional
semantics within Facebook’s social graph serving ecosystem
(Section 2).
• We present a quantitative study of atomic visibility violations
derived from production data to demonstrate the importance of
providing this guarantee in a read transaction API.
• We describe a novel RAMP-TAO protocol (Section 4) to effi-
ciently provide atomic visibility for an eventually consistent,
read-optimized system.
• We demonstrate the production feasibility of RAMP-TAO by
showing it incurs minimal overhead and requires only one round
trip for the vast majority of reads (Section 5).

2 OVERVIEW AND MOTIVATION
TAO provides online access to the social graph at Facebook [21]. It is
implemented using two layers of graph-aware caches that mediate
access to the statically-sharded MySQL database [35]. Updates are
replicated asynchronously via the Wormhole pub-sub system [44].

TAO prioritizes low-latency, scalable operations and thus opts
for weaker consistency and isolation models to serve its demanding,
read-dominant workloads. TAO provides point get, range, and count
queries, as well as operations to create, update, and delete objects
(nodes) and associations (edges). Its simple graph API is conducive
to maintaining high reliability and is sufficient for the vast majority
of applications at Facebook. As new applications emerge and as
Ent, our higher-layer query framework, evolves, we have been
exploring, designing, and implementing additional features such as
transactions while preserving TAO’s reliability and efficiency.

In this section, we explain the types of transactional guarantees
developers desire and highlight corner cases they need to handle be-
fore system-level options are offered. We then describe the current
approaches to providing failure atomicity. Finally, we demonstrate
the importance of atomic visibility for an intuitive read transaction
API and considerations for providing stronger guarantees at scale.

2.1 An example
Consider a hypothetical social media product built on top of TAO,
with user nodes, media nodes, edges when a user has composed a
piece of sheet music, and edges when a user has recorded a song.
This product enables musicians to share their sheet music and cor-
responding recordings together. Let us say that Alice wants to share
a piece of music she has composed and recorded so that others can
view the sheet music while listening to the recording. The applica-
tion writes the following edges together (the resulting subgraph is
shown in Figure 2):
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Figure 3: Example of a partial failure. The recording does
not refer to its user.

WriteEdge(⟨11,𝐶𝑂𝑀𝑃𝑂𝑆𝐸, 23⟩)
WriteEdge(⟨23,𝐶𝑂𝑀𝑃𝑂𝑆𝐸𝐷_𝐵𝑌, 11⟩)
WriteEdge(⟨11, 𝑅𝐸𝐶𝑂𝑅𝐷, 88⟩)
WriteEdge(⟨88, 𝑅𝐸𝐶𝑂𝑅𝐷𝐸𝐷_𝐵𝑌, 11⟩)

Without any transactional guarantees, it is possible that some of
the four writes above do not successfully complete, in which case
the graph would be left in a confusing state for the application to
manually clean up (Figure 3).

Now, suppose the application eventually writes the above edges
successfully in a transaction. While this process occurs, let us say
that Bob views Alice’s new music. The application tries to read
edges ⟨11,𝐶𝑂𝑀𝑃𝑂𝑆𝐸, _⟩ and ⟨11, 𝑅𝐸𝐶𝑂𝑅𝐷, _⟩. Under TAO’s even-
tual consistency, it is possible that Bob sees the sheet music for the
new piece (i.e., the edge ⟨11,𝐶𝑂𝑀𝑃𝑂𝑆𝐸, 23⟩) without seeing the
recording (⟨11, 𝑅𝐸𝐶𝑂𝑅𝐷, 88⟩). This anomaly is a fractured read, or
a read result that captures partial transactional updates (Figure 4).
Handling fractured reads would add complexity to the application
logic.

This example demonstrates that we desire two types of transac-
tional guarantees for TAO. First, we need failure atomicity, or write
atomicity: either all or none of the items in a write transaction are
persisted. Without it, the application is left responsible for cleaning
up Alice’s updates in the database in the case of a failure. Since the
application layer lacks full visibility into the underlying system,
remediation efforts are often hampered by scaling limits and corner
cases (e.g., a failed write is indistinguishable from a write that is
not yet replicated).

Second, Bob needs to see either both Alice’s sheet music and
recording or none of them. We desire atomic visibility, a property
that guarantees that either all or none of any transaction’s up-
dates are visible to other transactions. If we do not provide atomic
visibility, developers have to reason about all the possible inter-
mediate states the application might observe and then hide them
in the product or determine they can be revealed to users. These
application-level workarounds are a source of unnecessary com-
plexity and increase the cognitive load of developers.

We emphasize the distinction between failure atomicity and
atomic visibility, particularly for our system. The prevalence of
caching and asynchronous replication in TAO lengthens the period
before the effects of a failure-atomic transaction can be globally
observed.

The remainder of this section describes TAO’s current transac-
tional APIs for failure atomicity and why scalability is a prerequisite
for any approach to providing atomic visibility.

2.2 Current approaches for failure atomicity
Over the years, TAO has developed failure-atomic transactions APIs
in direct response to product engineer needs. Depending on the
properties of a transaction, such as what items are involved and

Figure 4: Example of a fractured read. Only the sheet music
can be viewed but not the corresponding recording.

where they are physically located, TAO executes the transaction
with varying strategies.

Single-shard MultiWrites. The first transactional API TAO
added was the MultiWrite—a multi-put API restricted to a sin-
gle shard. MultiWrites provide failure atomicity by leveraging the
underlying MySQL transactions and their ACID properties [6].

Over time, applications have run into several scaling limits with
the single-shard MultiWrite API. To start, developers must have
the foresight to colocate relevant data to use this API—opting in
late in their development cycle requires laborious data migration or
schema redesign. Moreover, a growing application may hit the phys-
ical limit of the underlying database machines. Colocation for Multi-
Writes can lead to shard capacity imbalance, resulting in abnormally
large, hot, or under-utilized shards. When physical machines are no
longer sufficient, developers need to overhaul the application and
physical data schema, a burdensome and time-consuming process.
Furthermore, sharding is one of TAO’s fundamental strategies for
horizontal scalability. Colocating all application data on a single
shard defeats the purpose of this capability. Finally, applications
may not have exclusive data ownership, so colocating data is not
always feasible. As such, developers need a more powerful API that
is not constrained by shard boundaries.

Cross-shard transactions.The limitations of single-shard trans-
actions led application developers to design ad-hoc solutions for
modifying data atomically across shards. However, these work-
arounds often faced issues because applications did not have full
visibility into TAO and its underlying database. For example, prod-
uct engineers could not easily distinguish between a non-existent
write and a write that was not yet replicated. As a result, it was
hard for developers to make data management decisions at the
application layer.

TAO developers realized that product engineers needed a more
general solution for cross-shard transactions at the infrastructure
level. Such an API would reduce redundant efforts by different
teams, support a centralized framework for simplified monitoring
and debugging, and allow the complex issues of protocol corner-
cases, scalability, and data clean-up after failures to be addressed
by system experts rather than product developers.

Consequently, TAO added failure-atomic, cross-shardwrite trans-
actions, which use a two-phase commit protocol (2PC) [27] with
persisted progress for failure recovery. Each transaction is assigned
a unique id and uses two-phase locking (2PL) [20]. Every item in a
transaction obtains the same logical timestamp. This 2PC protocol
is layered on top of TAO, and write transactions are opt-in.

Since items on different shards are independently and asyn-
chronously replicated to TAO cache replicas, a concurrent read
transaction can observe partial updates before all parts of a write
transaction are fully replicated. This is especially true if a failure
occurs during 2PC and recovery takes place. While the vast major-
ity of TAO replicas (99.99%) are less than 60 seconds stale [45] and
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the failure recovery process typically finishes within a few seconds
(see Figure 7b), billions of reads can occur within this time frame.

Bidirectional associations. Bidirectional associations fall in a
special category of failure-atomic transactions. These data struc-
tures are pairwise edges in the social graph (e.g., COMPOSED and
COMPOSED_BY in Figure 2). Since edges in a pair are sharded
by their source node, they can be stored on different shards. They
are ubiquitous in TAO, consisting of 52% of association types and
56% of the association write volume. TAO originally did not guar-
antee atomicity of bidirectional association updates (Section 4.2
of [21]). However, developers expect the forward and inverse edges
to have the same data and timestamp. Consequently, TAO gradu-
ally strengthened the guarantees of bidirectional associations and
started to consider them a special category of (potentially cross-
shard) transactions. Most of these transactions can complete in
one round (i.e., without the first phase of 2PC) because they have
no preconditions, such as uniqueness or existence. A background
fixer process now ensures failure atomicity. For the rare but im-
portant cases in which these edges require some invariant to hold,
developers use the cross-shard transactions previously described.

We highlight bidirectional associations because of their preva-
lence. Any mechanism we implement for atomic visibility needs to
work efficiently for bidirectional associations. While applications
typically read a pair of edges from only one side, more complex
queries may indirectly involve both edges.

2.3 Design goals
In this paper, we develop read transactions that allow users to per-
form batch reads over TAO with atomic visibility guarantees. In the
design of these protocols, we have several important considerations,
given the large-scale, read-optimized environment at Facebook.

First, we need to ensure that most queries can still be served
with low latency. Ideally, only applications that want these seman-
tics and only their transactional operations incur any associated
performance and / or storage costs.

Second, we should allow applications to opt into transactional
features and stronger guarantees late in their development cycle.
This retroactive optimization is a recurring pattern we have seen
at Facebook, and we wish to enable users to switch isolation levels
without changing their application code.

Third, our implementation should ideally be extensible to ad-
ditional data stores without core replication protocol changes. In
theory, this will allow us to apply these ideas to other data storage
systems as needed.

Finally, we want transactional features to be suitable for gradual
rollout. Changes to our mature production system often take several
years, and we release them to a handful of applications at a time.

These goals motivate the development of a layered approach to
our protocol design (Figure 1). Specifically, we can decouple the
concerns of availability and replication (provided by TAO) from
atomic visibility guarantees (provided by our protocols), similar
in spirit to the “bolt-on” approach [18]. Our protocols are more
complex than the original proposal: we extend the TAO caching
and database layers to extract desired guarantees and optimize
for performance, instead of solely using the data stores’s read /
write APIs. Nevertheless, this separation is practical for large-scale
systems and simplifies reasoning about consistency and isolation.

Algorithm 1: Atomic visibility checker
1Input : read set R
1 read ⟨timestamp 𝑡𝑠,metadata𝑚𝑑⟩ for each 𝑟 ∈ R
2

3 // Get the latest timestamp of each data item from 𝑚𝑑

4 ts𝑙𝑎𝑡𝑒𝑠𝑡 ← {}
5 for 𝑟 ∈ R do
6 for 𝑘𝑡𝑥𝑛 ∈ 𝑟 .𝑚𝑑 do
7 ts𝑙𝑎𝑡𝑒𝑠𝑡 ← max(ts𝑙𝑎𝑡𝑒𝑠𝑡 [𝑘𝑡𝑥𝑛], 𝑟 .𝑡𝑠)
8

9 // Check that each read value has the latest timestamp
10 for 𝑟 ∈ R do
11 if ts𝑙𝑎𝑡𝑒𝑠𝑡 [𝑟 .𝑘𝑒𝑦] > 𝑟 .𝑡𝑠 then
12 return false
13 return true

3 MEASUREMENT STUDY
To assess the impact of a layered solution for atomic visibility, we
perform ameasurement study of this guarantee at scale. Specifically,
we measure the frequency of atomic visibility violations of naïvely
batched reads and analyze the causes of these anomalies. Since we
do not yet have read transactions in production, our study is based
on the distribution of multi-key, production requests. Our findings
demonstrate the need for atomic visibility in a read transaction API.

3.1 Measuring atomic visibility violations
To measure potential atomic visibility violations, we first profile
multi-key, production read and write traffic. Based on this profile,
we mirror write transactions to a test tier, generate batched reads,
and invoke our atomic visibility checker to record any anomalies.
We also track the duration of these anomalies before full replication
and recovery logic occurs.

Modeling production data. We extract probability distribu-
tions from Ent to generate load distributions for our measurement
study. Currently, Ent queries that involve multiple sub-queries and
accesses to TAO represent the read transactional boundary we
consider supporting in the long term, so we use them to model
read transactions. Similarly, Ent changesets capture transactional in-
tent for writes. We focus on the main characteristics of changesets
and queries: the number of operations, the number of data items
involved, the number of distinct shards, and the success rate.

Generating workloads.We use a load generator to send write
transactions to test shards, which have the same TAO and underly-
ing database setup as in production within a single datacenter. We
inject a small percentage of failures, in accordance with the prob-
abilities gathered from production. The generator sends batched
reads as “read sets” to our atomic visibility checker.

We generate two types of read workloads: one based on the query
pattern profile mentioned above to evaluate production scenarios
and the other with read sets exactly overlapping transaction write
sets so that we measure the worst case scenario for atomic visibility
violations (Figure 7).

To extract probability distributions representative of TAO’swork-
loads, we study Ent datasets gathered over 30 days.We only consider
Ent queries (reads) spanning more than one data item to represent
read transactions. Similarly, we filter for changesets (writes) in-
volving two or more data items since these operations could be

3017



(a) (b)

(c) (d)

Figure 5: (a), (b): Ent queries typically span fewer than 10
operations and data items, but some queries can touchmany
keys. (c), (d): Most Ent changesets involve a few operations
and data items.

completed as transactions. Out of the filtered data, we find that
most Ent queries and changesets are limited to several data items
(Figure 5). On average, Ent queries contain 2.4 operations and 2.2
data items while changesets contain 2.4 operations and 2.1 data
items. However, the Ent query distributions have long tails, con-
taining up to 587 operations and 162 data items. This wide range
demonstrates the complexity of Facebook’s application logic. Both
Ent queries and changesets involve data items on 1 to 10 database
shards. Ent changesets have a failure rate of 2.22%, which we use
as the manually injected failure rate. Note that this rate captures
issues such as client-side timeouts, malformed configurations, and
precondition failures (e.g., deleting an already-deleted object), so
they represent an upper bound on the actual failure rate.

Atomic visibility checker. Since TAO’s write transaction pro-
tocol is similar to RAMP, in which all items in awrite transaction are
assigned a unique logical timestamp that is monotonically increas-
ing for each item, we use an algorithm similar to the RAMP-Fast
protocol [17] to detect fractured reads. Unlike the original protocol,
we must fetch data items and transactional metadata separately due
to how information is currently stored in TAO and the underlying
database. If some information is not available (due to replication
lag), we retry these reads. This checker is responsible for verifying
whether naïvely reading a set of data items violates atomic visibility.

As shown in Algorithm 1, the checker first reads the items (in-
dividually but in parallel) along with their timestamps and trans-
actional metadata, if they exist. Specifically, the checker attempts
to fetch the most recent transactional write set for each data item.
The information allows us to detect any atomic visibility violations.

(a) (b)

Figure 6:With generated production read sets, (a) anomalies
can occur for read transactions up to 13 seconds after a write
transaction starts. (b) Anomalies that can be resolved (or-
ange) are ones that overlap with successful write transac-
tions and occur within 500ms of the write transaction start.

As an example, suppose transaction 𝑇1 writes to items 𝑥 and 𝑦
with timestamp 1 and transaction 𝑇2 writes to items 𝑥 and 𝑦 with
timestamp 2. A read set R = {𝑥,𝑦} triggers the checker. In the
initial reads, the checker obtains 𝑥 with timestamp 1 and 𝑦 with
timestamp 2. It also fetches the write sets of the transactions for
those versions ({𝑥1, 𝑦1} for 𝑥1 and {𝑥2, 𝑦2} for𝑦2). The checker now
observes that the results 𝑥1 and 𝑦2 include only part of 𝑇2 (namely
𝑦2) and exclude 𝑥2. Thus, these read results violate atomic visibility.

When the checker finds an anomaly, it continues re-reading the
input read set and re-checking the results, in order to gauge how
long it takes for write transactions to be completed (possibly with
failure recovery) and fully replicated.

Bidirectional associations. We evaluate potential atomic visi-
bility anomalies for bidirectional associations separately because
most updates to these edges are a special case of write transactions
that do not need 2PC. We measure the frequency and duration of of
bidirectional associations failures. This data allows us to quantify
the window in which read anomalies are possible.

3.2 Analysis
Atomic visibility checking results.Out of the 10.1M read batches
and 1.5M write transactions we generate, we find 6,433 of our reads
are fractured: almost 1 in every 1,500 transactions violates atomic
visibility. For these anomalies, we measure the time between when
each write transaction starts and when the subsequent read transac-
tion begins. Fractured read transactions occur up to 13 seconds after
the write transactions they overlap with, as shown in Figure 6a.

We find that 45% of these fractured reads last for only a short
period of time (i.e., naïvely retrying within a few seconds resolves
these anomalies). After a closer look, these short-lasting anomalies
occur when read and write transactions begin within 500 ms of each
other. For these atomic visibility violations, their corresponding
write transactions were all successful. In other words, these were
transient anomalies due to replication delays.

The other 55% of these atomic visibility violations could not be
fixed within a short retry window and last up to 13 seconds. For
this set of anomalies, their overlapping write transactions needed
to undergo the 2PC failure recovery process, during which read
anomalies persisted.
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(a) (b)

Figure 7: With transactional write sets as exact read sets
(worst case scenario), (a) fractured reads do not persist for
longer than 30 seconds in our experiments, because (b) most
write transactions are fixed within this period. Note that the
recorded timestamps have second granularity.

Worst case scenario results.As previously mentioned, we also
check read sets that overlap exactly with transactional write sets
to gauge how long atomic visibility violations last in the worst
case. We find that read anomalies in our experiments do not persist
past the 30 seconds mark (Figure 7a). This correlates with the time
it takes for the 2PC failure recovery process to complete in most
cases (Figure 7b), indicating that anomalies are resolved when write
transactions eventually settle.

Bidirectional association results. Up to 2.0% of bidirectional
associations need to be fixed after failure. In hot spot scenarios,
bidirectional associations may take minutes to fully settle. While
reads to both edges are currently unlikely, there is a substantial
window of time in which atomic visibility violations can be re-
turned, demonstrating the importance of providing stronger read
guarantees for bidirectional associations.

3.3 Discussion

Our measurement study shows that atomic visibility violations can
occur at a rate of 0.06% for naïvely batched reads. Seemingly small,
this infrequent rate can be a significant source of complexity for our
product developers. These read anomalies are rare and nondeter-
ministic, making them difficult to detect, reproduce, and investigate.
Atomic visibility is integral to an intuitive read transaction API that
will greatly simplify the development process for engineers.

Write transactions that need to undergo 2PC failure recovery
(0.03% of write transactions) increase the scope and duration of
atomic visibility violations. Causes of failures range from client-side
contention or precondition failures to infrastructure hiccups. These
cases result in a majority (55%) of the anomalies we find, which can
persist for up to 30 seconds. This is a strong motivator for having
multiversioning even if limited to only transactional writes. For
example, if we know a write transaction has yet to recover, we can
return the prior version of an item on a read.

Any decrease in write availability (e.g., from service deployment,
data center maintenance, to outages) increases the probability that
write transactions will stall, leading in turn to more read anomalies.
This probability also grows with the size of a transaction’s write set,
as more shards are involved. It is unrealistic to completely remove

write unavailability and the ensuing atomic visibility violations if
we only naïvely batch reads.

Though write transaction failures are rarer in production than in
ourmeasurement study (sincewe consider theworst case scenarios),
atomic visibility violations introduce considerable complexity for
product developers. Therefore, we need to pursue atomic visibility
in a read transaction API.

4 READ ATOMIC ISOLATION FOR TAO
In this section, we motivate our choice of Read Atomic (RA) iso-
lation for TAO over other isolation guarantees. We then provide
an overview of RAMP transactions which provide RA isolation
and highlight the challenges of adopting them at Facebook. We
present a novel variation of the RAMP protocols, RAMP-TAO, that
ensures atomic visibility in a read-optimized, geo-distributed set-
ting. RAMP-TAO can quickly determine if a data item is a part of a
recently completed write transaction, enabling most reads to com-
plete in one round trip in the fast path and with minimal metadata
overhead.

4.1 Read isolation
When deciding on an isolation model for read transactions in TAO,
we must account for the fact that reads dominate TAO’s workload
andmust therefore be especially efficient. In contrast to TAO’s write
transactions, we want read-only transactions to be non-blocking.
Supporting stronger isolation models such as Snapshot isolation
(SI) in our read-optimized environment—with low latency (most
requests served locally) and cacheability for hot spot tolerance [14]—
remains challenging. Reading under SI requires systems to confirm
the presence or absence of certain updates, resulting in large depen-
dency sets even if the representation is compact (e.g., a timestamp).
Moreover, SI reads must hide newer updates, such as by using mul-
tiversioning [24, 50], and increase the likelihood that data needs to
be fetched cross-region in order to satisfy versioning constraints.

Among weaker isolation levels, Read Committed (RC), which
prevents access to uncommitted or intermediate versions of data
items, is often chosen as the default isolation level of many data
stores [16]. However, RC allows fractured reads of partial updates,
so it does not guarantee atomic visibility.

In contrast, Read Atomic isolation, which sits between RC and SI
in terms of strength, provides atomic visibility while maintaining
scalability. Moreover, the dependency set required for RA isolation
is bounded to the write sets of data items in the same write transac-
tion(s). This isolation model works well within TAO’s constraints.

While RA isolation is a practical solution for TAO and is the
subject of our study in this paper, it is not sufficiently strong for all
use cases. For example, point-in-time snapshots would be useful
for analytical queries, but this functionality is not supported by
RA. This isolation model also does not prevent read-write conflicts.
However, we have found RA isolation to be a practical, incremental
solution in the service of strengthening isolation guarantees on
TAO. As described in Section 2.1, atomic visibility is sufficient for
many of our potential use cases.

4.2 Design challenges
To implement Read Atomic isolation, we consider the RAMP pro-
tocols [17], which are the only algorithms we are aware of that
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specifically guarantee this isolation level for databases. RAMP of-
fers availability, scalability, and efficient performance while provid-
ing atomic visibility. Although the original RAMP paper does not
consider non-transactional workloads, the impact on single-item
requests is minimal because RAMP reads are non-blocking. To pre-
vent reads from stalling, RAMP readers rely on multiversioning
support to ensure that requested versions are always available.

The read protocol consists of two phases. In the first round,
RAMP sends out read requests for all data items and detects non-
atomic reads. In the second round, the algorithm explicitly repairs
these reads by fetching any missing versions. RAMP writers use a
modified two-phase commit protocol that requires metadata to be
attached to each update, similar to the mechanism used by cross-
shard write transactions on TAO.

While promising, the RAMP protocols cannot be directly applied
to TAO. There are three main issues: performance requirements
for read transactions, metadata storage constraints, and the lack of
multiversioning. We discuss each of these challenges in turn below.

Mostly fast read transactions. To serve TAO’s challenging
workloads at scale, most read transactions should have compa-
rable latency and storage overhead to existing read queries. In
particular, we desire low latency for read transactions that access
non-transactional data, since few operations are involved in trans-
actions (currently less than 3% of writes on average). Reading items
that were not updated by a write transaction is atomically visible
by definition, so we do not need to fetch metadata and check for
read anomalies on these results. In contrast, the original RAMP
protocols consider purely transactional workloads and require that
all read transactions verify that their results are atomically visible.

Furthermore, most read transactions should finish in one round
of communication with the cache to enable performance in line
with current TAO requests. As a result, we prefer the variation
of RAMP that enables one round reads by fetching the complete
transactional write set of each data item (i.e., RAMP-Fast) [17].

Handling hot spots is one of the major challenges of a social
networking workload [14]. As a result, our solution should ensure
cacheability of intermediate or final read results so that we mostly
serve data from the local region. This challenge is not covered in
the original RAMP paper, but one we must address in our setting.

Accessing transaction metadata. Obtaining the complete set
of transaction metadata for each data item is challenging in TAO
because of the size of this metadata and its access latency. The
original RAMP protocols do not consider the costs of replication
for availability [17]. However, in our environment, maintaining
multiple copies of metadata, in both cache and database replicas,
would generate heavy storage overheads. Moreover, updating this
metadata across different replicas would incur latency penalties.

For cross-shard write transactions, we weighed several design
choices for metadata content and placement. In particular, we
wanted to minimize the overhead of storing metadata for the large
majority of applications that did not use transactions. The cost of
storing transaction metadata in the cache is relatively high com-
pared to the underlying database, so we opted to store metadata
in the database to maximize cache capacity for serving requests.
We also decided to store metadata “out-of-line” in a separate table
within the database instead of inline with each row to avoid write
amplification. This table holds only information on participating

Figure 8: Transactionmetadata layout. The arrows show the
request path to obtain the most recent transactional write
set for a key 𝑥 . We first fetch the transaction id to identify
the participant shards and then acquire the various keys in-
volved in the transaction. In this case, the write set for key
𝑥 is ⟨𝑥,𝑦, 𝑧⟩.

shards rather than specific data items to further reduce storage
overhead. Figure 8 depicts our transaction metadata placement.

While these choices save space and improve cache performance,
they complicate the problem of piecing together the write set of
a transaction for use in atomic visibility checking. The current
schema requires multiple round-trips to the database to gather all
the necessary metadata. Instead, we seek a mechanism to access
this information from within the cache for most cases to serve read
transactions with low latency. When we do need to communicate
with the database, we should be able to amortize these requests.

Lack of multiversioning. Finally, the absence of multiversion-
ing support on TAOmakes it difficult to support RAMP transactions.
The RAMP protocols rely on access to multiple versions from the
underlying database to guarantee termination of read transactions
in at most two rounds of communication. Accordingly, a direct
implementation of RAMP would allow us to detect atomic visi-
bility violations but does not enable us to fix all of them. Since
TAO offers Ticket-inclusive reads [45]—at-or-after reads based on
version, which provide a lower bound on writes that should be
visible—we can naïvely retry reads until we have an atomically vis-
ible result. However, we cannot guarantee that a read transaction
will terminate with this strategy.

As an example, consider a situation in which a cross-shard trans-
action 𝑇1 writes to both 𝑥 and 𝑦. Simultaneously, 𝑇𝑟 reads these
two keys while 𝑇1 is writing. Specifically, 𝑇𝑟 reads from 𝑥 after 𝑇1’s
write to 𝑥 has committed but reads from 𝑦 before 𝑇1’s write to 𝑦
has committed. Thus,𝑇𝑟 ’s first round reads return 𝑥 = 𝑥1 and 𝑦 =⊥,
a RA violation. Consequently, 𝑇𝑟 attempts a second round of reads,
but in the meantime, 𝑇2 writes to both 𝑥 and 𝑦 under two-phase
commit. If 𝑇𝑟 reads from 𝑥 and 𝑦 while 𝑇2 is writing, it could read
{𝑥 = 𝑥1, 𝑦 = 𝑦2} or {𝑥 = 𝑥2, 𝑦 = 𝑦1} on its second round, both of
which violate RA. In this case, 𝑇𝑟 can retry the read again, but the
requested version will not necessarily be present.

Since only a single version is available for each data item, the
version needed to satisfy atomic visibility can be continuously over-
written, so the number of communication rounds can be unbounded.
Therefore, we cannot guarantee read transaction termination with-
out multiversioning. However, storing multiple versions of all data
items in TAO imposes significant storage overhead and additional
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Figure 9: By storing transactional information in the Refill-
Library, we enablemost read transactions to complete in one
round. We add the fields in green for RAMP-TAO.

complexities in the optimized read path and garbage collection of
old versions, which would affect users that do not need stronger
guarantees. We present a practical solution to this problem in the
next section and demonstrate it incurs minimal overhead in Sec-
tion 5.2.

4.3 Protocol
To address these challenges, we present the RAMP-TAO protocol,
which provides atomic visibility with negligible impact on TAO’s
performance and storage overheads. At a high level, we leverage
the fact that naïvely reading from TAO is atomically visible by
default once all updates in a transaction are globally replicated.
Thus, RAMP-TAO only needs to check for anomalies on recently
modified transactional data. To identify these items, we extend the
functionality of the RefillLibrary, a recent writes buffer in TAO.
We further modify this buffer to store transaction metadata and
multiple versions to ensure read transactions can terminate effi-
ciently. As a result, RAMP-TAO requires minimal changes to TAO,
and its ability to detect atomic visibility violations is also useful for
monitoring purposes. We now discuss this protocol in depth and
illustrate how it solves the three aforementioned challenges.

Atomic visibility check. Since data items not written to by the
same transaction are read atomic by definition and a large portion
of data returned by TAO is already atomically visible (Section 3), the
first part of our protocol performs a naïve batched read (Algorithm 2,
lines 3–5). RAMP-TAO then locally checks whether these results
already satisfy atomic visibility (lines 7–21). To do this, we need
information from our system that indicates whether an item has
been modified by a write transaction. We use the RefillLibrary
(Figure 9) to store this information.

The RefillLibrary is a metadata buffer recording recent writes
within TAO, and it stores approximately 3 minutes of writes from
all regions. The RefillLibrary and the main cache are updated by the
same at-least-once replication stream from Wormhole [44]. The Re-
fillLibrary was originally introduced to maintain cache consistency,
and it is currently only accessed during cache misses. In the case
of a cache miss, the main cache (on the same server) must actively
fetch newer updates from upstream and also query the RefillLibrary
for information. As a result, the main cache can contain items more
recent than what is in the buffer. In practice, the RefillLibrary is
almost always up-to-date with the cache.

To provide support for limited multiversioning in RAMP-TAO,
we extend the RefillLibrary to include a bit for each write to indicate
whether it was written as part of a transaction. For each data item
in a read transaction, we attempt to fetch this transactional bit and

Algorithm 2: RAMP-TAO
1 procedure READ_TXN(I : set of items):
2 ret, ret𝑡𝑥𝑛, ts𝑙𝑎𝑡𝑒𝑠𝑡 ← {}
3 // Read all values from TAO
4 parallel-for 𝑖 ∈ Ido
5 ret [𝑖] ← TAO_READ(i)
6

7 // Check if any items were updated by transactions
8 if {𝑖 ∈ ret : 𝑖 .𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑏𝑦_𝑡𝑥𝑛} == {} then
9 return ret

10

11 // Detect and fetch any missing items
12 while !timeout do
13 // Find the latest timestamps from txn metadata
14 for 𝑟 ∈ {𝑖 ∈ ret : 𝑖 .𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑏𝑦_𝑡𝑥𝑛} do
15 for 𝑘𝑡𝑥𝑛 ∈ 𝑟 .𝑚𝑑 do
16 ts𝑙𝑎𝑡𝑒𝑠𝑡 [𝑘𝑡𝑥𝑛] ← max(ts𝑙𝑎𝑡𝑒𝑠𝑡 [𝑘𝑡𝑥𝑛], 𝑟 .𝑡𝑠)
17

18 needed𝑡𝑠 ← {}
19 for 𝑖 ∈ I do
20 if ts𝑙𝑎𝑡𝑒𝑠𝑡 [𝑖] > ret [𝑖] .𝑡𝑠 then
21 needed𝑡𝑠 [𝑖] ← ts𝑙𝑎𝑡𝑒𝑠𝑡 [𝑖]
22

23 newer𝑡𝑠 ← {} // Items newer than requested
24 parallel-for 𝑖 ∈ needed𝑡𝑠 do
25 // At-or-after read
26 ret [𝑖] ← TAO_READ(i, needed𝑡𝑠 [𝑖])
27 if ret [𝑖] .𝑡𝑠 ≠ needed𝑡𝑠 [𝑖] then
28 newer𝑡𝑠 [𝑖] ← ret [𝑖] .𝑡𝑠
29 if newer𝑡𝑠 == {} then
30 return ret
31

32 return ERR_TIMEOUT

any other transaction metadata from the RefillLibrary (lines 3–5). If
a data item is in the buffer, examining this bit allows RAMP-TAO to
determine if any transactional data items are being read (lines 7–9).
If a data item is not in the buffer, there are two possibilities: either it
has been evicted (aged out) or it was updated too recently and has
not been replicated to the local cache. To distinguish between these
two cases, we fetch and compare the logical timestamp of the oldest
data item (the low watermark timestamp) in the RefillLibrary with
that of the data items being read. If the items are older than the low
watermark timestamp (Figure 9), they must have been evicted from
the buffer, and thewrites that updated these items have already been
globally replicated. Otherwise, our local RefillLibrary does not have
the most recent information and must fetch it from the database.
From the example in Section 4.2, if 𝑇𝑟 reads {𝑥 = 𝑥2, 𝑦 = 𝑦2} from
the main cache, but these data items are no longer in RefillLibrary,
RAMP-TAO can compare timestamp 2 with the low watermark
timestamp (let us say 5 in this case) to determine that these items
have been evicted from the buffer. Thus, we can safely return these
results since𝑇2 must have been fully replicated, and thus, the results
are atomically visible.

Gathering transaction metadata. For read transactions that
contain recently updated transactional data items, RAMP-TAO uses
the full write set for each item to determine atomic visibility (lines
13–21). We modify the RefillLibrary to store transaction metadata
by adding fields for the transaction id, timestamp, and participating
keys. By making this information cacheable, we facilitate hot spot
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Figure 10: Example execution of the fast path. A read trans-
action of ⟨𝑥,𝑦⟩ is sent to RAMP-TAO. The first round read
returns results indicating the two keys that have not be re-
cently updated to by a write transaction. The result is atomi-
cally visible by default, and RAMP-TAO can return after one
round.

tolerance for read transactions and avoid several round trips to the
database. This metadata is fetched in the first round read alongside
the transactional bit, and RAMP-TAO uses the write sets to detect
atomic visibility violations. If this information is not available in
the RefillLibrary, we obtain it from the database. However, this
extra query is rarely needed because the buffer is almost always
up-to-date with the cache. Furthermore, we can amortize the cost
of these metadata reads across subsequent TAO queries.

Multiversioning in cache. When RAMP-TAO detects a frac-
tured read, it sends requests to TAO for versions that would ensure
an atomically visible result. We observe that we only need multi-
versioning for data items recently updated by transactions. Data
items not written to by transactions trivially satisfy atomic visibility.
Older transactions that have already been fully replicated also do
not violate atomic visibility, since all parts of those transactions
can be observed.

While TAO does not provide full multiversioning, we extend the
RefillLibrary to store multiple versions of recent, transactionally-
updated data items. The memory impact of this change should
be small given that the RefillLibrary already stores 3 minutes of
recent writes, and we verify this claim in Section 5. Since the reten-
tion of the RefillLibrary is higher than the failure recovery time of
write transactions (at most 146 seconds including replication lag,
Section 3), any transactional updates that are evicted and garbage
collected will have been fully replicated. Adding bounded multiver-
sioning to the RefillLibrary allows RAMP-TAO to request specific
versions needed to satisfy atomic visibility.

As discussed in Section 4.2, the primary challenge from the
lack of multiversioning is read termination. The RefillLibrary’s
limited retention of multiple versions decreases the chance of non-
termination. However, RAMP-TAO reads of the requested versions
(line 26) may be hindered by in-progress write transactions or
asynchronous replication. In the Section 4.2 example, 𝑇𝑟 should
be able to read {𝑥 = 𝑥2, 𝑦 = 𝑦2} from the RefillLibrary if 𝑇2 has
completed and globally replicated. However, if𝑇2 is still in progress
or one of the keys has not yet been replicated, 𝑇𝑟 cannot return an
atomically visible result.

Thus, we present an optimization of our protocol. Instead of
having TAO always return the newest available versions (line 26),
we can ask the system to return slightly older ones to satisfy atomic
visibility (note that we omit the details of this optimization for

Figure 11: Example execution of the slow path. A read trans-
action of ⟨𝑥,𝑦⟩ is sent to RAMP-TAO. The first round results
represent an atomic visibility violation because 𝑥 and𝑦 were
updated together in a write transaction. RAMP-TAO deter-
mines 𝑥5 is needed and fetches this with a second round of
communication before returning a read atomic result.

clarity in Algorithm 2). The main advantage of trying to obtain less
up-to-date versions is that the RefillLibrary will almost certainly
have these items. In the example from Section 4.2, RAMP-TAO
could return {𝑥 = 𝑥1, 𝑦 = 𝑦1} instead of waiting for 𝑇2 to complete
and replicate.

This strategy enables RAMP-TAO to terminate as long as the
older versions are still in the RefillLibrary after the first round
read. Since the buffer’s retention window is much longer than
the time it takes for a round trip to TAO (typically well under one
second [21]), an item that has been read on the first round is unlikely
to have been evicted before another round occurs. Since applications
already tolerate stale read results under TAO’s eventual consistency,
returning an older, atomically visible result is preferable to the
possible increase in latency and number of rounds while trying
fetch the most recent versions.

With this optimization, read termination is almost always guar-
anteed. For the extreme cases in which the RefillLibrary does not
have the necessary versions (e.g., the requested version is not yet
replicated but previous versions have been evicted), RAMP-TAO
falls back to reading from the single-versioned database to obtain
the latest version. If the versions from the database still does not
satisfy atomic visibility, we either naïvely retry the reads with a
backoff and timeout or hold locks on contended keys during reads
to guarantee termination, although we have not found the need to
do so. In these exceedingly rare cases, we opt to provide a practical
solution for termination: the transaction fails and it is up to the
client to retry. However, we never return anomalies to the client.
In the future, we will explore using client-exposed multiversioning
support in the database to always guarantee termination.

End to end protocol description. Putting the pieces together,
we describe the request flow of our RAMP-TAO protocol for when
requests can be served locally (fast path) and when communica-
tion to the database or a remote region is required (slow path).
Read transactions that satisfy atomic visibility by default can com-
plete after one round of communication with the local cache under
RAMP-TAO (Figure 10). If the RefillLibrary indicates that a read
transaction contains no data written by a write transaction within
the last 3 minutes, we know the result is read atomic by definition
and can return to the client immediately. Otherwise, we check our
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results using transaction metadata from the RefillLibrary and can
return if the read is atomically visible.

Requests can take the slow path when information is not avail-
able in the local cache or a fractured read is detected, as shown in
Figure 11. When the RefillLibrary does not yet contain the most
recent transactional updates, RAMP-TAO requires a query to the
database to fetch the necessary metadata. If an atomic visibility
violation is found, we require another round of communication
to TAO. If the needed versions are unavailable in the local cache,
we must fetch them from the database or another region. These
additional queries are only required if the local RefillLibrary is not
up-to-date. With our optimization, we can fall back to reading older
versions in the RefillLibrary that satisfy atomic visibility. Therefore,
the second (dashed, grey) query out of the RefillLibrary in Figure 11
will rarely be needed. We evaluate the frequency and latency of
these requests in the next section.

4.4 Optimization for bidirectional associations
Given the ubiquity of bidirectional associations in our data model,
we need to ensure our protocol is especially efficient for these pairs
of edges at scale. As previously mentioned, bidirectional association
writes are considered a special category of write transactions (Sec-
tion 2.2), since they always involve two specific keys (the forward
and the inverse edges). Most of these writes do not have precon-
ditions like uniqueness, which means they do not need the first
phase of 2PC—the committed edge of either side serves as a per-
sisted record of that transaction. This obviates our need for storing
transactional metadata for most writes to these paired edges.

On the read side, we optimize for the case when a read transac-
tion includes a pair of bidirectional associations. Since both sides
contain the same data and metadata (logical timestamp), we can
use the results of one edge to repair the other. When an anomaly
is detected, RAMP-TAO simply replaces the data in the older side
with the information in its more up-to-date inverse. This additional
processing is purely local. Thus, under the RAMP-TAO protocol,
bidirectional association reads always complete in one round.

5 EVALUATION
We proceed to experimentally demonstrate the feasibility of RAMP-
TAO for the Facebook production environment. We implement a
prototype of our protocol and find that over 99.93% of read trans-
actions can be served in one round. We also benchmark the per-
formance and memory overheads of our proposed changes to TAO
and show that their effect is minimal. These results validate that
we can provide atomic visibility efficiently for our system.

5.1 RAMP-TAO prototype
Our RAMP-TAOprototype is implemented in C++ and uses Thrift [3],
a serialization and RPC framework. We make a few adjustments
from the protocol description in Section 4 due to what is currently
available in our production environment. We query the local-region
database for transaction metadata, since it is not yet available in the
TAO cache. Also, our prototype does not have access to multiple
versions of data items, so we rely on the timeout in Algorithm 2 to
retry reads for up to 10 seconds, as most write transactions complete
within this period (Section 3).

Figure 12:Most read transactions finish in under 100mswith
our RAMP-TAO prototype. These latencies will decrease as
we adapt the RefillLibrary for our protocol.

5.2 Results
We evaluate the performance of our prototype and demonstrate that
RAMP-TAOwill allow the majority of read transactions to complete
with latency comparable to current TAO reads when rolled out in
production. The memory overhead of our protocol also does not
significantly impact our system. We generate workloads for read
transactions using a similar mechanism as described in Section 3.

Performance overhead. Our prototype serves over 99.93% of
read transactions in one round of communication. Even when a
subsequent round is necessary, the performance impact is small
and bounded to under 114ms in the 99𝑡ℎ percentile (Figure 12).
Our tail latency is within the range of TAO’s P99 read latency of
105ms for a similar workload. We note that these are the worst-case
results for RAMP-TAO because the prototype currently requires
multiple round trips to the database for transaction metadata. Once
the changes to the RefillLibrary are in place, the large majority of
the read transactions can be directly served with data in this buffer
and will take no longer than a typical TAO read.

For the 0.06% of read transactions that require more than one
round, the RefillLibrary will be able to serve most of these requests
once it supports multiversioning. In the rare instances in which the
necessary data is not available in the RefillLibrary, we query the
database for information, similar to our current prototype. The fre-
quency of these cases should be small, considering the freshness of
data in the RefillLibrary and our protocol optimization (Section 4.3).
Given that our current results include the latency of multiple data-
base accesses (Figure 12), most read transactions can still complete
quickly even if some information is not in the RefillLibrary.

Finally, database unavailability is an issue that the RefillLibrary
cannot address. While read transactions to these keys may stall
during this period, these types of failures are very infrequent and
will have a limited impact on overall read latency. Given these
occurrences are rare, we opt to allow the application to decide what
to do after a timeout rather than returning fractured reads.

Memory overhead. RAMP-TAO requires three pieces of infor-
mation to be added to the RefillLibrary: a bit indicating if a data
item was transactionally updated, write transaction metadata, and
multiple versions. While these modifications decrease the buffer
capacity, our benchmarks show that the memory overhead of our
protocol is minimal.
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The transactional bit allows the RefillLibrary to quickly detect if
our first round read result already satisfies atomic visibility. This
change actually has no impact on the capacity of this buffer: data
items are allocated based on size class, so packing an additional bit
will not cause them to be re-classified.

To access transaction metadata faster and to avoid database
accesses, we need to add this information to the RefillLibrary. For
each transactional item, we include the transaction id (16 bytes)
and the transaction write set (each key is no more than 24 bytes,
and most write sets contain fewer than 10 keys). Compared with a
direct approach (such as in the original RAMP protocols) in which
transaction metadata is stored and propagated to all replicas, our
strategy has several advantages. We only incur memory overhead
in cache for transactional data items (3% of writes) in the recent
past. Additionally, since we can always fall back to the slow path,
the RefillLibrary has the flexibility to make the tradeoff between
extra latency on reads and buffer space. For example, if a data
item is updated in a transaction with an unusually large write set,
the RefillLibrary has the option to store only the transactional bit
without the rest of the metadata. Overall, this overhead is negligible.

The final source of memory overhead is storing multiple ver-
sions of a transactional data item in the RefillLibrary. Under current
workloads, 3% of writes are transactional, and at most 14% of ad-
ditional versions need to be stored for these updates within the
RefillLibrary’s retention window. Thus, keeping multiple versions
in the buffer would lead to a 0.42% overhead with existing traffic. In
other words, even in the worst case, the RefillLibrary only needs to
store less than one additional version, on average, per transactional
data item. We note that this overhead can vary widely with the
workload and it is the extreme case that matters.

5.3 Discussion

Our prototype and benchmarks validate the feasibility of using
RAMP-TAO in production. We show that the performance and
memory overheads of this protocol are inconsequential in prac-
tice. Importantly, non-transactional requests to TAO are virtually
unaffected since RAMP read transactions are non-blocking. Fur-
thermore, the RefillLibrary will not become a bottleneck for reads
since only cache misses from non-transactional requests currently
access it (Section 4.3), and transaction traffic will be relatively small.

Our solution minimizes the number of requests that must go
cross-region or to the database so that over 99.93% of read transac-
tions can take the fast path. Even for reads on the slow path, the
additional latency incurred is comparatively low and in line with
current TAO requests that must go upstream.

RAMP-TAO requires minimal changes to the existing infrastruc-
ture and is suitable for incremental rollout. The cross-shard write
transaction protocol on TAO is very similar to the RAMP two-phase
write protocol, and all the necessary metadata is already stored.
We leverage the existing RefillLibrary to provide the required in-
formation for detecting and repairing atomic visibility violations.
Using this buffer for limited multiversioning is an efficient strategy
since we only need to access specific versions before replication
completes. Once a write transaction is fully replicated, reads of
those updates automatically satisfy atomic visibility (with respect
to that transaction).

As a side benefit, the first half of the RAMP-TAO protocol is
conducive to monitoring atomic visibility anomalies and serves as
an effective verification mechanism as well as detection tool for
new use cases.

Furthermore, our approach with RAMP-TAO is generalizable:
by storing a bit within the cache, we can quickly identify whether
a read transaction can go down the fast path. This optimization
is especially important for read-optimized, geo-replicated systems
for which cross-region requests are expensive. Most of these sys-
tems implement a caching layer for performance because accessing
persistent storage is slow [11, 21, 38]. Our protocol maximizes the
proportion of requests served by the local cache to avoid the high
latency of going cross-region or to the database.

6 LESSONS LEARNED
Stronger guarantees only when necessary. Given TAO’s de-
manding workloads, any degradation in service availability, re-
quest latency, or resource efficiency to support stronger guarantees
should be borne solely by the callers opting in to higher isolation
levels. Similar to the case with stronger consistency [45], only a
small but important fraction of requests benefit from stronger trans-
actional semantics. For these applications, we offer the option of
higher isolation levels and allow developers to choose whether to
incur the resulting performance costs.

By layering RAMP-TAO on top of the underlying data stores, we
can isolate the impact of stronger guarantees and take advantage of
the performance benefits that TAO already provides. Our layering
approach also limits changes to TAO’s mature infrastructure and
enables isolation guarantees to be strengthened with relative ease.
The architectural separation proposed in [18] can be an effective
strategy for large-scale systems.

Working with read-optimized systems. Providing stronger
isolation and consistency guarantees for read-optimized systems
boils down to a staleness check of local data and infrequent cross-
region requests to fetch any missing pieces. This recurring design
pattern is a natural consequence of a read-heavy, geo-replicated
environment and can be found in multiple systems within Facebook
such as FlightTracker [45]. The staleness check must: (1) rely on
local data to avoid cross-region communication in most cases, (2)
result in few false positives so that we minimize any extra work,
and (3) conducive to incremental repair so that stronger guarantees
can be provided. Our RAMP-TAO protocol also follows this pattern.

RAMP-TAO completes a local check for atomic visibility in its
first round by relying on the RefillLibrary and only goes cross-
region to obtain any missing versions that have not yet been repli-
cated. The RefillLibrary’s garbage collection (low watermark) times-
tamp is sufficient to avoid most false positives and distinguishes
between data items that have been evicted and those that have not
yet been added. Furthermore, the RAMP protocols use a strategy of
detecting then repairing read anomalies, which enables incremental
repair of stale results.

Read andwrite availability.Our results in Section 3 show that
write (un)availability can impact read availability. The interaction
of different systems can further complicate the implications of
write availability. With the emergence of FlightTracker [45], we
now encode recent write metadata in Tickets and attached them to
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TAO reads to provide RYW consistency. The Ticket-inclusive (i.e.,
at-or-after) reads advance timestamps and versions more rapidly.
This behavior amplifies the effects of write unavailability to reads
in the transactional context. If a cross-shard write transaction stalls
or has not yet undergone failure recovery, the versions requested
by Tickets may not be available.

To address this issue in the short term, we could preempt (roll-
back) this write transaction. If FlightTracker requests a version
that is unavailable, the system can fallback to aborting the relevant
transaction to prevent lack of termination. RAMP-TAO can also
use this strategy to complete reads in the case of severe write un-
availability. When full multiversioning is supported, we can allow
reads to always proceed without stalling.

7 RELATED WORK

Transactional semantics. There has been a pattern of retroac-
tive addition of transactional semantics to existing data stores. For
example, Cassandra 2.0 [1] has added failure-atomic transactions.
DynamoDB [5] has also recently offered ACID transactions that use
a centralized transaction coordinator. MongoDB [4] has included
transactions that support Snapshot Isolation. In line with this trend,
TAO added failure-atomic write transactions, and this paper details
how atomically visible read transactions can be layered on top.

Many recent data stores provide strong consistency and isola-
tion guarantees as well as transactional APIs. CockroachDB [50],
etcd [8], and Yugabyte [13] are strongly consistent data stores
that offer distributed ACID transactions. Further examples include
Calvin [51], HBase [7], Google’s F1 [43], and VoltDB [48], among
others. While TAO’s query APIs are much simpler, these systems
are not read-optimized to suit our needs.

Our solution for stronger isolation guarantees operates in an
read-heavy environment and enables read transactions to be pro-
cessed without significant latency overheads. We navigate a similar
tradeoff as Zanzibar [39], which is built on top of Google’s strictly
serializable Spanner [24] but exposes a weaker consistency model
to clients for improved read efficiency and latency. There has also
been extensive work on supporting transactions with asynchro-
nous replication. Some systems require applications to identify and
isolate operation side effects [30] while others rely on maintaining
large dependency sets [32, 33, 36, 46]. RAMP-TAO provides trans-
actional semantics in an asynchronously replicated environment
without additional work from the application side and has limited
storage overhead.

Isolation models.Many databases offer weak isolation levels,
which enable greater concurrency and improved performance [16,
37]. Industrial systems such as BigTable [22], Espresso [41], Man-
hattan [2], and Voldemort [49] provide Read Uncommitted isolation
in which writes to each object are totally ordered, but this order
can differ per replica.

To the best of our knowledge, the RAMP protocols [17] are the
first work to explicitly address Read Atomic isolation. Subsequent
work in [47] presents an protocol for providing atomic visibility
for the serverless setting. We adapt RAMP for a read-optimized,
geo-distributed environment.

A range of systems have been built to ensure stronger isolation
levels at the cost of unavailability and increased latency. Snapshot

isolation is offered by some systems [10, 12, 15, 40, 50]. Serializabil-
ity is another popular choice, found in FaunaDB [9], G-Store [25], H-
Store [28], L-Store [31], MDCC [29], Megastore [19], Spanner [24],
SLOG [42], and TAPIR [52], among others. Our work shows how
we can ensure Read Atomic isolation while maintaining availability
and scalability.

Stronger guarantees at Facebook. Facebook has published
several studies on the consistency semantics of its systems. Ajoux
et. al. identified four fundamental challenges [14] in providing
causal consistency at Facebook: (1) integrating across many stateful
services, (2) tolerating high query amplification, (3) handling linch-
pin objects, and (4) providing a net benefit to users. We address all
of these issues in our efforts to strengthen isolation guarantees on
TAO. We find that our layered approach for transactional semantics
allows developers to benefit from the simplicity, convenience, and
extended functionality of stronger isolation, without affecting users
that do not require these guarantees.

Lu et. al. measured replica consistency on TAO [34]. While sev-
eral consistency models were explored, this study did not consider
transactions. The emergence of the Ent framework and TAO trans-
actions have increased the scope of semantic boundaries. Further-
more, Ent queries can span multiple systems in addition to TAO
and make it more difficult to ensure stronger guarantees. Flight-
Tracker [45] is Facebook’s approach to distributed consistency but
does not address transactions and isolation guarantees. Our work
is the first to study transactional anomalies at the application-level
and demonstrate how to strengthen isolation guarantees for TAO.

8 CONCLUSION

This paper describes the challenges and importance of offering
transactional semantics and stronger isolation guarantees for TAO.
We explain why developers need transactions at Facebook and de-
scribe the current failure-atomic write transactions on TAO. We
then measure potential anomalies that can arise in production from
batched reads and demonstrate the need for stronger guarantees in
a read transaction API. As our solution, we present the RAMP-TAO
protocol, which ensures atomic visibility for a read-optimized, geo-
graphically distributed environment. We implement a prototype of
this protocol to show its feasibility for production. Our benchmarks
illustrate that we can provide high-performance, atomically visible
read transactions with little memory overhead. We also give insight
into the benefits of an incremental, layering approach to stronger
isolation guarantees for large-scale systems.
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