
Gemini: Fast Failure Recovery in Distributed Training
with In-Memory Checkpoints

Zhuang Wang∗
Rice University

Zhen Jia
Amazon Web Services

Shuai Zheng
Amazon Web Services

Zhen Zhang
Amazon Web Services

Xinwei Fu
Amazon Web Services

T. S. Eugene Ng
Rice University

Yida Wang
Amazon Web Services

Abstract
Large deep learning models have recently garnered substan-
tial attention from both academia and industry. Nonetheless,
frequent failures are observed during large model training
due to large-scale resources involved and extended train-
ing time. Existing solutions have significant failure recovery
costs due to the severe restriction imposed by the bandwidth
of remote storage in which they store checkpoints.

This paper presents Gemini, a distributed training system
that enables fast failure recovery for large model training by
checkpointing to CPU memory of the host machines with
much larger aggregated bandwidth. However, two challenges
prevent naïvely checkpointing to CPU memory. First, the
availability of checkpoints in CPUmemory cannot be guaran-
teed when failures occur. Second, since the communication
traffic for training and checkpointing share the same net-
work, checkpoint traffic can interferewith training traffic and
harm training throughput. To address these two challenges,
this paper proposes: 1) a provably near-optimal checkpoint

placement strategy to maximize the probability of failure
recovery from checkpoints in CPU memory; and 2) a check-
point traffic scheduling algorithm to minimize, if not elimi-
nate, the interference of checkpoint traffic on model training.
Our evaluation shows that overall Gemini achieves a faster
failure recovery by more than 13× than existing solutions.

∗Work done during Zhuang’s internship at Amazon Web Services.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’23, October 23–26, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0229-7/23/10. . . $15.00
https://doi.org/10.1145/3600006.3613145

Moreover, it achieves optimal checkpoint frequency, i.e., ev-
ery iteration, and incurs no overhead on training throughput
for large model training.

CCS Concepts: • Computer systems organization→ De-
pendable and fault-tolerant systems and networks; •
Computing methodologies→Machine learning.

Keywords: Distributed Training, Fault Tolerance, In-memory
Checkpoint
ACM Reference Format:
Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, T. S.
Eugene Ng, and Yida Wang. 2023. Gemini: Fast Failure Recovery in
Distributed Training with In-Memory Checkpoints. InACM SIGOPS

29th Symposium on Operating Systems Principles (SOSP ’23), October

23–26, 2023, Koblenz, Germany. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3600006.3613145

1 Introduction
Deep learning models have shown their ability to perform
outstandingly on a spectrum of tasks including computer
vision [33, 69], natural language processing [26, 76], etc. Re-
cently, language models like ChatGPT [8] and GPT-4 [53]
have drawn significant attention from both academia and
industry with unprecedented performance as well as model
size. PaLM [24] has 540 billion parameters, which is a 360× in-
crease over GPT-2 [61] that was released three years earlier.
This trend is still expediting because continued improve-
ments have been observed from scaling the model sizes [24].
To train such a large model, failures are inevitably frequent
because of the number of involved accelerators (e.g., tens
of thousands of GPUs) and the length of training time (in
months). For example, OPT model training reports a failure
frequency of twice a day [14]. The situation will get worse
as the model size keeps growing.
Existing solutions cannot handle training failures effi-

ciently. According to the report from OPT-175B training [85],
about 178,000 GPU hours were wasted due to various train-
ing failures. As the failure frequency increases with the scale
of the training, failures can dramatically slow down the train-
ing progress (up to 43% [44]). One major reason for such a
significant overhead caused by failures is the inefficiency of

364

https://doi.org/10.1145/3600006.3613145
https://doi.org/10.1145/3600006.3613145
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600006.3613145&domain=pdf&date_stamp=2023-10-23

checkpointing. Existing solutions rely on naïve checkpoint-
ing [3, 28, 48], which periodically saves the model states to a
remote persistent storage system, for failure recovery, i.e., the
process to fetch the latest checkpoint and resume training to
the states right before a failure. Intuitively, a higher network
bandwidth leads to shorter checkpoint retrieval times, and a
higher checkpoint frequency reduces training progress loss
in case of failures. However, existing solutions are restricted
by the low bandwidth to remote persistent storage, result-
ing in significant failure recovery costs, i.e., taking up to
tens of minutes to retrieve the checkpoint captured a few
hours ago to resume the training. It is worth noting that the
state-of-the-art large model training adopts a synchronized
method to guarantee model quality [50, 83, 85], making it
infeasible to only drop the training progress of the failed ma-
chine/device upon a failure to proceed without waiting for
the failure recovery. Instead, it requires all machines/devices
to roll back to the same checkpoint for failure recovery.
To reduce the prohibitively large failure recovery over-

head, this paper presents Gemini, a distributed training sys-
tem that leverages the high bandwidth of CPU memory to
achieve fast failure recovery in large model training via
prompt checkpoint retrieval (in seconds) and high check-
point frequency (ideally checkpoint for every training it-
eration). Gemini incorporates the hierarchical storage con-
sisting of local CPU memory, remote CPU memory, and
remote persistent storage, to store checkpoints. It leverages
CPU memory to store checkpoints for failure recovery, and
meanwhile stores checkpoints for other purposes in remote
persistent storage. Gemini takes advantage of the optimized
network connection for large-scale training to checkpoint
the model states in the CPU memory of the compute clus-
ter, which allows for a much higher frequency than existing
solutions. It guarantees a 100% failure recovery and always
fetches the available checkpoint from the fastest storage to
minimize the recovery cost.

Checkpointing to CPU memory raises two questions that
Gemini needs to address. First, how tomaximize the prob-
ability of a successful failure recovery from CPUmem-
ory? The availability of checkpoints in CPU memory is not
guaranteed upon a failure as the corresponding machines
could be down. When the checkpoints are unavailable, in the
worst case, the system has to resort to checkpoints stored
in remote persistent storage, leading to significant failure
recovery costs. The success rate of recovering a failure from
checkpoints stored in CPU memory largely depends on how
the checkpoints are placed among the CPU memory in dif-
ferent host machines. Gemini stores redundant checkpoints
and proposes a placement strategy that maximizes the prob-
ability. We have proved that the strategy is optimal when the
number of machines participating in training is divisible by
the number of replicas and the strategy remains near-optimal
with established bounds in other cases. Second, how tomin-
imize the interference of checkpoint traffic withmodel

training? Checkpointing model states to remote CPU mem-
ory shares the network resource with the regular training.
Naïvely checkpointing to CPU memory will easily delay
the training traffic which impacts the training throughput.
Gemini designs a deliberate communication scheduling algo-
rithm for interleaving these two types of traffic to minimize
the interference on training throughput.

Geminimakes no assumptions about the underlying paral-
lelism strategy [42, 49, 62, 67, 89] of the training system. It tar-
gets static and synchronous training with fixed computation
resources, following the common practice for large model
training in industrial settings [3, 24, 28, 68, 77, 78]. Elastic
training [45, 54, 81] and asynchronous training [47, 84] are
beyond the scope of this paper. Gemini also makes no as-
sumptions about the accelerator. In this paper, we conducted
experiments on NVIDIA GPUs, but the technique applies to
other accelerators such as AWS Trainium [2], which remains
for future work.

To sum up, this paper makes the following contributions:
• To the best of our knowledge, Gemini is the first system
that takes advantage of CPU memory checkpointing to
achieve efficient failure recovery in large model training.
• We design a provably near-optimal checkpoint placement
strategy that maximizes the probability of a successful
failure recovery from CPU memory.
• We propose a communication scheduling algorithm that
pipelines checkpoint traffic across host machines to mini-
mize its interference with model training.

We build Gemini atop DeepSpeed [63] and evaluate it with
ZeRO-3 [62] on various large deep learning models using
both Amazon EC2 p4d.24xlarge (NVIDIA A100 GPUs) and
p3dn.24xlarge (NVIDIA V100 GPUs) instances. Compared
to existing solutions [3, 48], Gemini reduces the checkpoint
retrieval time by up to 250× and improves the checkpoint
frequency by up to 8×. As a result, Gemini achieves a faster
failure recovery by more than 13× without incurring over-
head on training throughput.

2 Motivation
2.1 Failure Recovery in Model Training
Frequent failures in model training. Developers have
observed many failures during large model training due to
the large number of GPUs and the long training time. For
example, training OPT-175B used 992 NVIDIA A100 GPUs,
and the training process encountered around 110 failures
over a period of two months [85]. Similar symptoms have
also been reported during training BLOOM [3].
Wasted time for failure recovery. We have noticed a sig-
nificant waste of computation resources caused by large
model training failures. The model states, i.e., the learnable
parameters and the optimizer states, are resided in GPU
memory during training. When a failure occurs, the model
states must be rolled back to previous states by retrieving

365

Failure recovery in large model training

Time

Failure

The wasted time

Checkpoint
Retrieval

Iteration

ckpt 1

100 200 300 310 200

tckpt

ckpt 2 ckpt 3 ckpt 2

trtvl

Figure 1. An illustration of how failure recovery uses check-
points. The checkpoint frequency 𝑓 to the remote persistent
storage is every 100 iterations (same as BLOOM [3]). A fail-
ure occurs at iteration 310 when the third checkpoint is
incomplete. The failure recovery rolls back the model states
to iteration 200 by retrieving the second checkpoint.

the latest checkpoint for failure recovery. For example in Fig-
ure 1, a failure occurs at iteration 310, but the latest available
checkpoint is at iteration 200. After the failure recovery, the
training progress from iteration 200 to 310 is lost. Addition-
ally, retrieving the latest checkpoint incurs overhead during
the failure recovery process.
We define wasted time as the sum of the time spent on

the lost training process before a failure and the time for
retrieving the latest checkpoint during a failure recovery.
As illustrated in Figure 1, the wasted time describes the
timespan of a paused training process due to a failure, i.e.,
the time of computation resource wasted in terms of the
training process. It is determined by three factors:
• checkpoint time, which is the time to finish a checkpoint
of model states. We denote checkpoint time as 𝑡𝑐𝑘𝑝𝑡 in
Figure 1.
• checkpoint frequency, which determines how frequently
the training system checkpoints the model states to the
storage system. We denote checkpoint frequency as 𝑓 .
• retrieval time, which is the time to retrieve the latest com-
plete checkpoint1. We denote retrieval time as 𝑡𝑟𝑡𝑣𝑙 , shown
in Figure 1.
In this paper, we use the average wasted time as the main

metric to evaluate the performance of a checkpointing solu-
tion, because a failure may occur at any time and the wasted
time varies. The best case is that a failure occurs right af-
ter the completion of a checkpoint and the wasted time is
𝑡𝑐𝑝𝑘𝑡 + 𝑡𝑟𝑡𝑣𝑙 . The worst case is that a failure occurs right be-
fore the completion of a checkpoint and the wasted time is
𝑡𝑐𝑝𝑘𝑡 + 1/𝑓 + 𝑡𝑟𝑡𝑣𝑙 . Assuming failures are evenly distributed
between two consecutive checkpoints, the average wasted
time (denoted as 𝑇𝑤𝑎𝑠𝑡𝑒𝑑) can be expressed as

𝑇𝑤𝑎𝑠𝑡𝑒𝑑 = 𝑡𝑐𝑘𝑝𝑡 +
1
2𝑓
+ 𝑡𝑟𝑡𝑣𝑙 . (1)

In addition, we have the following constraint:

1/𝑓 ≥ 𝑚𝑎𝑥 (𝑡𝑐𝑘𝑝𝑡 ,𝑇𝑖𝑡𝑒𝑟), (2)

1We exclude the overheads to fix failures and replace machines in the wasted
time because they are not caused by checkpoints.

Instance type Cloud GPU GPU memory CPU memory
p3dn.24xlarge [15] AWS 8 V100 8 × 32 GB 768 GB
p4d.24xlarge [16] AWS 8 A100 8 × 40 GB 1152 GB
ND40rs_v2 [11] Azure 8 V100 8 × 32 GB 672 GB
ND96asr_v4 [12] Azure 8 A100 8 × 40 GB 900 GB
n1-8-v100 [10] GCP 8 V100 8 × 32 GB 624 GB
a2-highgpu-8g [10] GCP 8 A100 8 × 40 GB 640 GB
DGX A100 [13] NVIDIA 8 A100 8 × 80 GB 2 TB

Table 1. The CPU memory size is much larger than the GPU
memory size in GPU machines.

where𝑇𝑖𝑡𝑒𝑟 is the iteration time. One checkpoint cannot start
until its previous checkpoint completes, and there is no need
to have multiple checkpoints within one iteration as the
model states are updated once every iteration.
To reduce the wasted time, it is critical to reduce check-

point time 𝑡𝑐𝑘𝑝𝑡 to enable a higher checkpoint frequency 𝑓 ,
and the optimal frequency 𝑓 is every iteration 1/𝑇𝑖𝑡𝑒𝑟 .

2.2 Limitations of Existing Solutions
Existing solutions fail to achieve high checkpoint frequency
for failure recovery due to the remote persistent storage sys-
tem usage. They checkpoint the model states at a particular
frequency and persist checkpoints in a remote persistent
storage system [48, 65]. In common practice, existing solu-
tions checkpoint model states at a low frequency, e.g., every
three hours in BLOOM training [3], to reduce the required
storage capacity. A few hours of computation resources are
wasted when a failure occurs. Considering thousands of
GPUs involved in training and hundreds of failures experi-
enced during training, the total computation resource waste
is significant, and the training time slowdown can be up to
43% [44]. It is infeasible to arbitrarily increase the checkpoint
frequency because checkpoint frequency is bottlenecked by
the bandwidth of the remote persistent storage [28]. For ex-
ample, it takes 42 minutes to checkpoint the model states
of MT-NLG [68] to the remote persistent storage when the
bandwidth is 20Gbps. According to Equation (1), the average
wasted time for failure recovery is 105 minutes, which makes
the training system less efficient.

2.3 The Opportunity and Challenges
Minimizing the wasted time for failure recovery is crucial for
enhancing the system efficiency of distributed training, espe-
cially large model training. We next explore the opportunity
to achieve this goal and discuss the identified challenges.

2.3.1 Checkpointing to CPU memory. The low band-
width severely restricts the frequency of checkpointing to
remote persistent storage. We observe that the CPU memory
in GPU machines is sufficient to store a few checkpoints.
Table 1 compares the GPU and CPU memory in popular
GPU instances in public clouds for large model training,
demonstrating that the CPUmemory is much larger than the

366

GPU memory. This observation provides a great opportunity
for Gemini to store the latest checkpoint in CPU memory.
Gemini can leverage the network connecting GPU instances
for checkpointing. Because this network is optimized for
training, its bandwidth is much higher than the bandwidth
of the remote persistent storage [16]. Therefore, Gemini can
achieve a much higher checkpoint frequency for failure re-
covery than existing solutions.
One concern is that the CPU memory size is insufficient

to store the history of checkpoints for purposes other than
failure recovery, such as transfer learning [56] and model de-
bugging [23, 28]. To address this concern, Gemini decouples
checkpoints for different purposes. It only stores the check-
points for failure recovery in CPU memory, while storing
checkpoints for other purposes in remote persistent storage.

2.3.2 Challenges. Checkpointing to CPU memory allows
for a much higher frequency than existing solutions, thereby
reducing thewasted time. However, this approach also presents
new challenges.
How to maximize the probability of failure recovery
from checkpoints stored in CPU memory? Although
checkpointing to CPU memory enables a high frequency,
the availability of checkpoints in CPU memory cannot be
guaranteed when failures occur. In the cases of unavailable
checkpoints in CPUmemory, we have to fall back to using the
low-frequency checkpoints stored in the remote persistent
storage for failure recovery, causing significant wasted time.
How to minimize the interference of checkpoint traf-
fic with model training? When storing checkpoints in
CPU memory, communication traffic for training and check-
pointing have to share the same network. Without careful
design, checkpoint traffic can interfere with training traffic
and harm training throughput. The interference overhead
is non-negligible because it can negatively impact every it-
eration. This can significantly diminish the benefits gained
from checkpointing to CPU memory.

3 System Architecture of Gemini
We propose Gemini, which achieves a high checkpoint fre-
quency, even every iteration, to optimize the failure recovery
overhead in distributed training. It minimizes the wasted
time by checkpointing to CPU memory and addresses the
two aforementioned challenges. Figure 2 illustratesGemini’s
architecture that consists of twomodules: 1) a checkpoint cre-
ation module (Section 3.1); and 2) a failure recovery module
(Section 3.2). The two modules cooperate to resume training
once a failure occurs.

3.1 Checkpoint Creation Module
Gemini uses a decoupled and hierarchical storage design for
checkpointing. In Gemini, the checkpoint creation module
stores the checkpoints of each GPU machine to different des-
tinations, including local CPUmemory, remote CPUmemory

Remote
storage system

GPU

Distributed
key-value store

Cloud
operator

Checkpoint creation
module
(Sections 4&5)

Machine

Failure recovery module
(Section 6)Worker

Agent

Worker
Agent

Worker
Agent

Checkpoint Health status Machine replacement

GEMINI

Root
Agent

Figure 2. The system architecture of Gemini. Gemini con-
sists of checkpoint creation and failure recovery modules. In
the checkpoint creation module, each worker agent controls
checkpoint destinations and schedules checkpoint communi-
cations. In the failure recoverymodule, worker agents update
machines’ health statuses in the distributed key-value store.
The root agent periodically checks the health statuses in the
distributed key-value store, interacts with the cloud oper-
ator to replace failed machines as needed, and guides the
checkpoint retrieval for failure recovery.

on other machines, and remote persistent storage. The check-
point creation module stores the checkpoints for failure re-
covery in local and remote CPU memory. These checkpoints
are managed by Gemini’s checkpoint creation module and
are transparent to users. On the other hand, checkpoints
for other purposes, such as transfer learning [56] and model
debugging [28], are stored in remote persistent storage and
managed by users. During failure recovery, checkpoints are
first retrieved from local CPU memory and then remote CPU
memory if unavailable in local CPUmemory. If both local and
remote CPU memory checkpoints are unavailable, Gemini
retrieves checkpoints from remote persistent storage.
As illustrated in Figure 2, each training machine has a

Gemini worker agent for checkpointing to CPU memory.
Where to place checkpoints for failure recovery on CPU
memory determines the failure recovery capacity. To maxi-
mize the probability of failure recovery from checkpoints in
CPU memory, we propose a provably near-optimal check-
point placement strategy for checkpointing to CPU memory
(Section 4). Gemini determines the checkpoint placement
strategy when training is initialized. During runtime, the
Geminiworker agent on each machine communicates check-
points from GPU memory to CPU memory based on the
placement strategy and checkpoint frequency. To minimize
or even eliminate the interference of checkpoint traffic with
model training, we propose a traffic scheduling algorithm
that pipelines checkpoint traffic and interleaves it with train-
ing traffic (Section 5).

3.2 Failure Recovery Module
Gemini’s failure recovery module has four components: a
group of Gemini worker agents, a Gemini root agent, a dis-
tributed key-value store, and a cloud operator. Worker agents

367

monitor their own machine’s health status and update it in
the distributed key-value store [9, 29, 30]. The unique root
agent runs on a regular trainingmachinewith aworker agent.
The training machine with the root agent running is called
the root machine. The root agent periodically checks the
health status of each training machine from the distributed
key-value store. The cloud operator manages the training
computation resources and replaces failed machines with
healthy ones as needed.
If the root agent detects a training machine failure, the

root agent takes corresponding actions based on failure types
(Section 6). For example, when a training machine replace-
ment is needed, the root agent interacts with the cloud op-
erator to complete the machine replacement and guides the
replaced machine where to retrieve its checkpoints.

Worker agents also periodically check the root machine’s
health status in the distributed key-value store. A root ma-
chine failure is detected when the root machine’s health
status has not been updated for a predefined time threshold.
In the case of a root machine failure, one alive worker ma-
chine is promoted as the root machine, and one new worker
machine is initialized to replace the failed one. Gemini relies
on the leader election method in the distributed key-value
store [40, 52] for the root machine selection.

4 Checkpoint Placement to CPU Memory
To reduce the wasted time, Gemini writes checkpoints to
CPU memory to achieve high frequencies. However, the
checkpoints stored in CPU memory may become invalid for
recovery when some GPU machines are disconnected from
training. In such cases, Gemini has to fetch from remote
persistent storage to perform recovery, leading to significant
wasted time. Adding more checkpoint replicas reduces the
possibility of unavailable checkpoints in CPU memory, but it
also increases CPU memory usage and network bandwidth
competition with training traffic. In addition to the number
of replicas, our research has revealed that the checkpoint
placement strategy, i.e., where to store the checkpoint repli-
cas, also affects the possibility, as shown in Figure 3. Hence,
we aim to identify the best placement strategy that maxi-
mizes the probability of failure recovery from CPU memory,
given a specific number of replicas. This problem can be
formulated as follows:

Problem 1. Given 𝑁 machines and 𝑚 checkpoint replicas,

what is the optimal placement strategy to distribute the 𝑚

replicas among the 𝑁 machines to maximize the probability

of failure recovery from CPU memory?

We design a mixed placement strategy described in Al-
gorithm 1 to solve Problem 1. The inputs of the algorithm
are the number of machines 𝑁 , and the number of replicas
𝑚. The output is the machine group assignment and the
specific strategy. If the number of machines 𝑁 is divisible

Algorithm 1: Mixed checkpoint placement strategy
Input: 𝑁 is the number of GPU machines and𝑚 is the number of

checkpoint replicas.
Output: The group list G and the strategy.

1 Function placement_strategy(𝑁 ,𝑚):
2 G = []
3 𝑔 = ⌊𝑁 /𝑚⌋
4 for 𝑖 ← 0 to 𝑔 − 1 do
5 𝐺 = []
6 for 𝑗 ← 1 to𝑚 do
7 𝐺.𝑎𝑑𝑑 (𝑚 × 𝑖 + 𝑗)
8 end
9 G.𝑎𝑑𝑑 (𝐺)

10 end
11 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = ”𝑔𝑟𝑜𝑢𝑝”
12 if 𝑁 is not divisible by𝑚 then
13 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = ”𝑚𝑖𝑥𝑒𝑑”

// add remaining machines to the last group

14 for 𝑗 ← 𝑔 ×𝑚 + 1 to 𝑁 do
15 G[−1] .𝑎𝑑𝑑 (𝑗)
16 end
17 end
18 return G, 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦

by the number of replicas𝑚, we will apply a group place-
ment strategy for all machines participating in training. The
𝑁 machines are divided into 𝑁 /𝑚 groups and each group
has𝑚 machines. During training, each machine broadcasts
its checkpoints to the 𝑚 − 1 machines in the same group.
It also writes one checkpoint to its own CPU memory as
a local replica, which is one tier in Gemini’s hierarchical
checkpoint solution. Otherwise, when 𝑁 is not divisible by
𝑚, we split the 𝑁 machines into ⌊𝑁 /𝑚⌋ groups and apply
the group placement strategy to the first ⌊𝑁 /𝑚⌋ − 1 groups.
For the last 𝑁 −𝑚(⌊𝑁 /𝑚⌋ − 1) machines, we apply a ring
placement strategy, in which each machine writes the check-
points from GPU memory to its local CPU memory and also
sends checkpoints to the consecutive𝑚 − 1 machines in the
ring from its left hand. Regardless of the placement strategy
employed, Gemini copies the checkpoint from GPU memory
to the local CPUmemory and treats it as a local replica. It has
two advantages: 1) it can mitigate the network bandwidth
contention with training traffic; and 2) for certain failure
types, e.g., software failures (refer to Section 6.1), Gemini
can directly resume training from the local replica to accel-
erate checkpoint retrieval. We pivot the group placement
strategy because it exhibits a greater likelihood of recovering
from CPU memory compared to the ring placement strategy
with the same number of replicas. We also have Theorem 1
for the performance of the mixed placement strategy. Refer
to Appendix A for the proof.

Theorem 1. To address Problem 1 for checkpoint placement:

1. When 𝑁 is divisible by𝑚, the mixed placement strat-

egy (equals group placement strategy) is the optimal

placement strategy.

368

Challenge #1

Machine 1

Machine 2

1
2

2
1

local cpkt

Machine 3

Machine 4

3
4

4
3

Group 1 Group 2

Machine 3

Machine 4

3
4

4
3

Machine 5
5

5

Group 2

Group 3

remote cpkt

Machine 1

Machine 2

1
2

2
1

Group 1

(a) Group placement strategy.

Challenge #1

Machine 1

Machine 2

1
4

2
1

Machine 4

Machine 3

4
3

3
2

local cpkt
remote cpkt

Ring

(b) Ring placement strategy.

Challenge #1

Machine 1

Machine 2

1
2

2
1

Machine 3

Machine 4

3
4

4
3

Group 1 Group 2

Machine 3

Machine 4

3
5

4
3

Ring

local ckpt
remote ckpt

Machine 1

Machine 2

1
2

2
1

Group

Machine 5

5
4

(c) Mixed placement strategy.

Figure 3. Illustrations of the mixed checkpoint placement strategy.

2. When 𝑁 is not divisible by 𝑚, the mixed placement

strategy minimizes the checkpoint communication time.

Its failure recovery probability from CPU memory is

near-optimal and the gap is bounded by (2𝑚 − 3)/
(
𝑁
𝑚

)
.

Figure 3a illustrates an example of the group placement
strategy with 𝑁 = 4 and𝑚 = 2. There are two groups and
each group has two machines. Each machine has a local
checkpoint, i.e., its local machine checkpoint, and a remote
checkpoint, i.e., the checkpoint from the other machine in
the same group. Figure 3b illustrates an example of the ring
placement strategy with 𝑁 = 4 and 𝑚 = 2, in which all
machines form a ring structure for checkpointing to CPU
memory. Assume two machines fail at the same time. With
the group placement strategy, training can recover failures
from CPU memory except Machines 1 and 2, or Machines
3 and 4 fail simultaneously (a total of two possible cases).
However, with the ring placement strategy, the concurrent
failures of any two consecutive machines (four possible cases
in total) will result in the loss of both replicas of a checkpoint
stored in CPU memory. Consequently, the probability that
training has to fetch remote persistent storage for failure
recovery with the group placement strategy is 50% lower
than that with the ring placement strategy. Figure 3c also
illustrates an example of the mixed placement strategy with
𝑁 = 5 and𝑚 = 2, in which the first two machines form a
group and the last three machines form a ring.

With the group placement strategy, we calculate the prob-
ability that Gemini can recover failures from CPU memory
using Corollary 1. Refer to Appendix B for the proof. Accord-
ing to Corollary 1, when the number of machines 𝑁 is 16,
the number of replicas𝑚 is 2, and the failure machine 𝑘 is 2,
the probability is 93.3% and it increases with 𝑁 . It means that
with two checkpoint replicas, Gemini can resume training
from CPU memory in most cases.

Corollary 1. When 𝑁 is divisible by𝑚 and 𝑘 machines are

disconnected simultaneously, the probability that Gemini can

recover failures from CPU memory is

Pr(𝑁,𝑚, 𝑘) = 1, if 𝑘 < 𝑚

Pr(𝑁,𝑚, 𝑘) ≥ max{0, 1 − 𝑁 (𝑁 −𝑚𝑘−𝑚)
𝑚(𝑁𝑘)

}, if 𝑚 ≤ 𝑘 ≤ 𝑁
(3)

5 Minimizing Training Interference
Frequently writing checkpoints to remote CPU memory
might hinder overall training performance due to potential
network bandwidth competition with training traffic. Our
primary objective is to minimize the wasted time without
compromising training performance. In this section, we will
explain how Gemini mitigates the interference caused by
frequent checkpointing. We begin by examining the possi-
bility of minimizing the impact of checkpointing on model
training (Section 5.1), then discussing the challenges and the
approaches we took to overcome them (Section 5.2). Finally,
we elaborate on the specific algorithm and mechanism we
used in Gemini (Section 5.3 & 5.4).

5.1 Traffic Interleaving
Modern distributed training, such as large model training,
relies on collective communication operations for synchro-
nization. For example, in ZeRO [62], each GPU needs to
fetch the parameters of each layer from other GPUs before
its computation in both forward and backward passes. These
communication operations can block computation when the
parameters of a layer are not ready but the computation of
the previous layer has been completed. We denote the com-
munication traffic for model computation, including gradient
synchronization and parameter fetching, as training traffic.
An example of training traffic during model computation
is shown in Figure 4a. When checkpointing to remote CPU
memory, its traffic, denoted as checkpoint traffic, shares the
same network as training traffic, resulting in potential net-
work resource contention that may delay training traffic and
hinder computations. When performing checkpointing at
the start of subsequent iterations, it blocks the training pro-
cess and incurs non-negligible overheads for model training,
as illustrated in Figure 4b. This significantly negates the ben-
efits gained from the reduced wasted time by checkpointing
to CPU memory. Hence, Gemini must carefully orchestrate
the checkpoint traffic to minimize its interference with train-
ing throughput. Fortunately, we observe that the network
has idle timespans overlapped with computation and this
naturally occurs in large model training. This observation

369

Computation

Communication

Computation

Communication

Checkpoint

Computation

Communication

Checkpoint

Computation Update Training
communication

Checkpoint
communication

Time

Time

Time

(a) Baseline

(b) Blocking

(c) Interleaving

iteration

Figure 4. Interleaving communications of training and
checkpointing can minimize the interference.

provides a great opportunity for Gemini to insert check-
point traffic in these idle timespans and overlap checkpoint
communications with computation, as shown in Figure 4c.

5.2 Difficulties and Approaches
Gemini needs to write checkpoints from local GPU mem-
ory to CPU memory on remote machines. It first uses GPU-
to-GPU communications to send checkpoints between ma-
chines for interleaving checkpoint trafficwith training traffic,
which also uses direct GPU-to-GPU communications [41, 64]
among machines in large model training [37, 60, 87]. Af-
ter that, it transmits the checkpoints from GPU memory
on remote machines to their CPU memory with GPU-to-
CPU copy. This design allows scheduling training traffic and
checkpoint traffic in the application layer without relying on
the network layer. Gemini orchestrates both types of traffic
by leveraging existing inter-GPU communication libraries,
such as NCCL [1], in a unified manner. However, this design
raises two practical difficulties.
Difficulty: Extra GPU memory consumption. Naïvely
sending a whole checkpoint from a local GPU to a remote
GPU consumes a significant amount of GPU memory, which
may trigger GPU out-of-memory (OOM) and crash the train-
ing process, as shown in Figure 5b. The checkpoint size is
huge in large model training. For example, the checkpoint
size of GPT2-100B [87] on each GPU is 9.4GB. Furthermore,
most GPU memory has already been used to store model
parameters, gradients, and intermediate results. Therefore, a
remote GPU is unlikely to accommodate a whole checkpoint
during large model training.
Approach: Partitioning checkpoint. Although a whole
checkpoint with several GBs is too large for a remote GPU,
we observe that each GPU usually has a few hundred of mem-
ory available during training based on our profiling results.
Gemini first reserves a small GPU memory buffer for check-
point communications, then partitions a whole checkpoint

Sender

Receiver

GPU

GPU

1 1 1 1

Time

Time

GPU

GPU

CPU

1 1 1
Time

GPU

GPU

CPU

1

(b) The whole checkpoint
is stored in GPU, causing
OOM errors.

(c) Checkpoint is partitioned,
but GPU-to-CPU copies block
checkpoint communications.

(d) The GPU buffer is splitted
into two parts. Checkpointing
to CPU memory is pipelined. 2 2 2 1 12 2

Out of memory

1

(a) Baseline without
checkpointing. Only training
communications and Update
are displayed.

iteration

CPU

X

X

Time

Training
communication
Checkpoint
communication

GPU-to-CPU
copy

1 GPU buffer
part 1

Update

communication bubbles

Figure 5. Different schemes for interleaving training and
checkpoint traffic.

into small chunks and transfers the small chunks separately.
The remote GPU moves the received chunk to CPU memory
once a communication completes making the buffer avail-
able for the next communication. Figure 5c illustrates the
process of partitioning checkpoint.
Difficulty: Local GPU-to-CPU copy overhead. Check-
pointing to remote CPU memory includes a procedure of
GPU-to-CPU copy on the receiver side. The sender cannot
transit new checkpoint chunks until the GPU-to-CPU copy
is complete, causing communication bubbles in the GPU-to-
GPU communication timeline, as shown in Figure 5c. Since
the GPU-to-CPU memory copy bandwidth is comparable to
the inter-machine GPU-to-GPU network bandwidth 2, the
bubble time could be close to the inter-machine GPU-to-GPU
checkpoint communication time, which may exacerbate the
interference with model training.
Approach: Pipelining checkpoint transmission.Gemini
uses a pipeline mechanism to allow checkpoint communica-
tions to fully leverage the network idle timespans. It splits
the reserved GPU memory buffer into multiple sub-buffers
and partitions the checkpoints into chunks that fit into these
sub-buffers. Gemini alternatively uses these sub-buffers for
transferring checkpoint chunks.When copying a chunk from
GPU to CPU memory, Gemini can simultaneously receive a
new checkpoint chunk using GPU-to-GPU communication
in a separate sub-buffer. Figure 5d illustrates an example
with two sub-buffers. Inter-machine GPU-to-GPU communi-
cation overlaps with local GPU-to-CPU memory copy and
the idle timespans are fully utilized for checkpoint traffic.

2We measured both bandwidths in our p4d.24xlarge instances in AWS and
both are around 400Gbps.

370

Algorithm 2: Checkpoint Partition Algorithm
Input: T = {𝑡1, 𝑡2, . . . , 𝑡𝑑 } is the set of idle timespans.𝐶 is the

size of a checkpoint and𝑚 − 1 is the number of
checkpoints for communications. There are 𝑝 buffer parts
and the size of each part is 𝑅/𝑝 . 𝐵 is the network
bandwidth. 𝜇 ∈ (0, 1) is a coefficient for the variance of idle
spans across iterations. 𝑓 (𝑠) is the communication time for
a checkpoint chunk with size 𝑠

Output: The checkpoint partitions.
1 Function checkpoint_partition():
2 𝑡 [𝑑] = +∞
3 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = []
4 𝑐𝑝𝑘𝑡_𝑖𝑑 = 0
5 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑖𝑧𝑒 = 𝐶

6 foreach 𝑡 ∈ T do
7 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑝𝑎𝑛 = 𝜇 × 𝑡
8 while 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑝𝑎𝑛 > 0 do
9 if 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑝𝑎𝑛 ≥ 𝑓 (𝑅/𝑝) then
10 𝑠𝑖𝑧𝑒 = 𝑅/𝑝
11 else
12 𝑠𝑖𝑧𝑒 = max{0, (𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑝𝑎𝑛 − 𝛼)𝐵}
13 end
14 𝑠𝑖𝑧𝑒 = min{𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑖𝑧𝑒, 𝑠𝑖𝑧𝑒 }
15 if 𝑠𝑖𝑧𝑒 > 0 then
16 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑖𝑧𝑒 = 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑖𝑧𝑒 − 𝑠𝑖𝑧𝑒
17 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑝𝑎𝑛 =

𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑝𝑎𝑛 − 𝑓 (𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑖𝑧𝑒)
18 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠.add(𝑠𝑖𝑧𝑒)
19 end
20 if 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑖𝑧𝑒 == 0 then
21 if 𝑐𝑝𝑘𝑡_𝑖𝑑 <𝑚 − 1 then
22 𝑐𝑝𝑘𝑡_𝑖𝑑 = 𝑐𝑝𝑘𝑡_𝑖𝑑 + 1
23 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑖𝑧𝑒 = 𝐶

24 else
25 return 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠

26 end
27 end
28 end
29 end
30 return 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠

5.3 Checkpoint Partition Algorithm
Gemini uses a checkpoint partition algorithm illustrated
in Algorithm 2 to partition checkpoints for transmission
pipelining. Given the set of profiled network idle timespans
T = {𝑡1, 𝑡2, . . . , 𝑡𝑑 } (discussed in Section 5.4), Algorithm 2
generates a scheduling of checkpoint partitions. Suppose
there are 𝑝 GPU buffers in Gemini and the size of each buffer
is 𝑅/𝑝 , where 𝑅 is the total reserved GPU memory size. Sup-
pose there are𝑚 checkpoint replicas, and𝑚 − 1 replicas are
sent to the remote CPU memory while one is stored locally.
Suppose the time length of sending a partition of size 𝑠 to
a receiver is 𝑓 (𝑠) = 𝛼 + 𝑠/𝐵, where 𝛼 is the startup time for
transmission and 𝐵 is the network bandwidth [21, 72, 87].
Algorithm 2 uses a coefficient 𝜇 ∈ (0, 1) to consider the

variance of the profiled timespans across iterations (Line 7).

Because the size of each buffer is 𝑅/𝑝 , the maximum check-
point chunk size is also𝑅/𝑝 . The algorithm checks howmany
chunks it can insert in each idle timespan with multiple
rounds. In each round, it compares 𝑓 (𝑅/𝑝) with the remain-
ing idle timespan (𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑝𝑎𝑛). If 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑝𝑎𝑛 is greater,
it sets 𝑠𝑖𝑧𝑒 to the maximum chunk size𝑀/𝑝 (Lines 9-10); oth-
erwise, it sets the size to the amount of traffic volume that can
be transmitted during 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑝𝑎𝑛 (Line 11). It then com-
pares 𝑠𝑖𝑧𝑒 with the remaining checkpoint size (𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑖𝑧𝑒)
and takes the smaller one as the chunk size (Line 14). It
accordingly updates 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑝𝑎𝑛 and 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑖𝑧𝑒 for the
next round (Lines 15-19). When 𝑟𝑒𝑚𝑎𝑖𝑛_𝑠𝑖𝑧𝑒 equals zero, the
algorithm finishes the partition of one checkpoint. If there
are multiple checkpoint replicas for a higher failure recovery
rate from CPUmemory, the algorithm resets 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑖𝑧𝑒
as the checkpoint size and determines the partition for the
new checkpoint again (Lines 21-23). The algorithm returns
𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 after all the checkpoints are partitioned.

Our evaluation in Section 7 demonstrates that for all the
evaluated large models, Algorithm 2 allows Gemini to fully
utilize the network idle timespans and enables it to perform
checkpointing at the frequency of every iteration without
interfering with training.
Finish checkpointing within an iteration. However, it is
still possible that the total time required for checkpointing
cannot be fit in the available network idle timespans. In such
a scenario, Gemini places the unfinished checkpoint traffic
in the last idle timespan, as Algorithm 2 sets the interval of
the last idle timespan as positive infinity (Line 2). Although
checkpoint communications hinder the update operation and
prolong the iteration time in this case, Gemini can reduce
the checkpoint frequency to amortize the incurred overhead.
Move checkpoints from GPU to local CPU. Each ma-
chine also needs to copy its checkpoint from GPU memory
to its local CPU memory according to our placement strat-
egy discussed in Section 4. This checkpoint copy incurs no
traffic across machines. Gemini also partitions this replica
and overlaps its GPU-to-CPU copy with communications for
training traffic. In this way, there is no interference between
the local GPU-to-CPU copy of its own checkpoint and other
checkpoints.

5.4 Online Profiling
Gemini adopts online profiling for the first several iterations
of training, e.g., 20 iterations in our implementation, without
checkpointing in order to capture the network idle times-
pans during model training. It timestamps the start and the
end time of all communication operations in an iteration to
derive the timeline of communication traffic. Gemini then
obtains the average time interval of each idle timespan for
subsequent checkpoint traffic scheduling. We observed that
the profiled timeline remains almost constant across itera-
tions, which is consistent with previous studies [77, 79, 86].
The normalized standard deviation of the measurements is

371

Machine 1

Machine 3

Machine 2Machine 4

cpkt for local instance

Instance 1

Instance 3

Instance 2Instance 4

X

Instance 1’

X
Instance 2’

cpkt from remote storage

cpkt for remote instance

1

2

3

4

1

2

3

4

(a) Existing solutions for any types of fail-
ures. All checkpoints are always retrieved
from the remote persistent storage.

Machine 1

Machine 3

Machine 2Machine 4

Machine 1

Machine 3

Instance 2Machine 4

X

Machine 2’
1
2

2
1

4
3

4
3

1
2 2

4
3

4
3

(b) Gemini for software failures. Check-
points are at local and the retrieval time
is negligible.

Machine 1

Machine 3

Machine 2Machine 4

X

Machine 2’
1
2 2

4
3

X

Machine 4’
4

Checkpoint from
remote storage
Checkpoint from
local machine
Checkpoint from
remote machine

GPU

(c) Gemini for failures with two machines replaced.
The newly added machines retrieve checkpoints
from alive machines.

Figure 6. Illustrations of different mechanisms to recover training with four machines from different failures.

less than 10%. Gemini uses these idle timespan intervals to
determine the checkpoint partitions in each idle timespan
according to Algorithm 2 described in Section 5.3.

6 Resuming Training from Failures
Gemini achieves high-frequency checkpoints with the mixed
checkpoint placement and the traffic interleaving algorithm.
In this section, we will explain how Gemini uses the check-
points to resume training when failures occur. We first define
our failure classification and then describe how Gemini re-
sumes training accordingly.

6.1 Failure Types
There are various failures that can occur during the train-
ing of large models [36, 55, 70, 75] and these failures have
different root causes and consequences. We categorize these
failures into two types from the perspective of recovery:
software failures and hardware failures, following the litera-
ture [31, 36, 55, 70, 74, 75].
Software failures are caused by bugs in software or er-
rors in data. Software failures can be fixed by restarting the
training process without requiring hardware replacements.
Hardware failures are caused by hardware issues, such
as GPU malfunctions and network failures. For example,
bit corruptions induced by radiation can cause double bit
error, leading to data corruptions [36, 75]. The network links
and switches that connect GPU machines can fail [31, 71],
disconnecting them from training. These failures can occur
in a single machine or multiple machines simultaneously.
The training cluster typically detects problematic machines
and then replaces them with healthy ones before resuming
training.

6.2 Failure Recovery Mechanisms
Existing checkpointing solutions [28, 65, 85] make no dis-
tinction between software failures and hardware failures. As
shown in Figure 6a, they always retrieve the checkpoints
from the remote persistent storage regardless of the failure
type, resulting in costly wasted time. In this subsection, we

will present the recovery mechanisms of Gemini for both
types of failures, respectively.
Software failures recovery. Recovering from software fail-
ure does not require fetching checkpoints from other ma-
chines, and the training configurations (e.g., the rank ID of
the machine) remain the same. When a software failure oc-
curs, the training process is interrupted, but the hardware
remains healthy and all checkpoints stored in CPU memory
are still accessible. Because each machine stores a replica of
its own checkpoint, all machines can directly recover train-
ing from their local checkpoints, as shown in Figure 6b.
Hardware failures recovery. When hardware failures oc-
cur, the training system needs to replace the failed machines.
The root agent in Gemini interacts with the cloud opera-
tor (e.g., Auto Scaling Group platform in AWS) to replace
the faulty machines with healthy ones. When recovering
training from hardware failures, there are two cases: 1) there
are still healthy machines in each checkpoint placement
group assigned by Algorithm 1, and 2) there is at least one
checkpoint placement group in which all machines fail si-
multaneously. We will next discuss these two cases.
Case 1: As each checkpoint placement group still has

healthy machines maintaining checkpoint replicas, Gemini
can fetch the checkpoint replica from them for newly added
machines and then recover the training progress. Figure 6c
illustrates an example with four machines and two machines,
Machine 2 and Machine 4, just failed simultaneously. The
root agent replaces the two failed machines with two healthy
ones. The two newly added machines replace their positions,
reuse their machine rank IDs, and retrieve their checkpoints
from alive machines. Because a checkpoint replica of Ma-
chine 2 was stored in Machine 1, Machine 2′ (the one that
replaced Machine 2) retrieves the checkpoint from Machine
1 for failure recovery. Machine 4′ also retrieves the check-
point from Machine 4. The machines that have no failures
can directly restart training from their local checkpoints.

Case 2: In this case, machines must retrieve checkpoints
from the remote persistent storage to ensure all machines
recover training consistently. Although part of the model
checkpoints are still accessible in the alive GPU machines,

372

they are not consistent with the ones in the remote persis-
tent storage because they are stored from different iteration
numbers. In practice, the majority of failures during large
model training are software failures or hardware failures
with one machine replaced; it is rare to have two or more
machine failures at the same time [3, 14]. Even with multiple
machine failures simultaneously, Gemini can still recover
failures from CPUmemory in most cases thanks to the check-
point placement strategy, as we will discuss in Section 7.2.
Standby machines. In case of hardware failures, the cloud
operator is expected to provide healthy machines to replace
faulty ones immediately. However, this replacement opera-
tion heavily depends on the availability of healthy machines
in the GPU cloud and it can take a non-deterministic dura-
tion to successfully reserve new machines for the current
training workload. In order to minimize the waiting time
resulting from machine replacement, the training cluster
can pre-allocate a few standby machines. When a machine
suffers from hardware failures, a standby machine can im-
mediately become active to replace the failed one for failure
recovery. After that, the root agent returns the failed one
and requests another standby machine. Gemini allows users
to specify different numbers of standby machines according
to their training workloads and the availability of healthy
machines in GPU clouds.
Failure detection. The cloud operators typically provide
tools to detect training failures and locate the failedmachines.
For example, Amazon SageMaker [17] has tools for failure
type detection and failure machine localization. Gemini re-
lies on these tools to detect failures in large model training.
In addition, the worker agents and the root agent in Gemini
also periodically send heartbeat signals to the distributed
key-value store for failure detection.

7 Evaluation
In this section, we will demonstrate the effectiveness of
Gemini for failure recovery in large model training. Specifi-
cally, we will address the following research questions:
• Failure recovery performance: Can Gemini reduce the
wasted time without harming training throughput? (Sec-
tion 7.2)
• Scalability: How does Gemini perform under different
failure frequencies and training scales? (Section 7.3)
• Effectiveness of traffic interleaving:How does our traf-
fic interleaving algorithm affect the training throughput?
(Section 7.4)

7.1 Implementation and Experimental Methodology
Implementation. We implement Gemini on top of Deep-
Speed [63] and use ZeRO-3 setting [62]. we adopt etcd [9]
as the distributed key-value store implementation to coordi-
nate failure recovery. On the cloud provider side, we rely on
Amazon EC2 Auto Scaling Groups (ASG) [4] to manage GPU

Model size Hidden size Intermediate #Layers #AH
GPT-2 10B 2560 10240 46 40
GPT-2 20B 5120 20480 64 40
GPT-2 40B 5120 20480 128 40
RoBERTa 40B 5120 20480 128 40
BERT 40B 5120 20480 128 40
GPT-2 100B 8192 32768 124 64
RoBERTa 100B 8192 32768 124 64
BERT 100B 8192 32768 124 64

Table 2. Configurations of different language models. AH
is short for attention heads. GPT-2 10B means GPT with 10
billion parameters. The same naming convention applies to
other models.

machines. When failures are detected by ASG, the faulty
machines are replaced with healthy ones. Such service is
also available in Google Cloud [6] and Microsoft Azure [5].
Gemini reserves 128MB GPU memory for checkpoint com-
munications. There are two CPUmemory buffers to store the
checkpoints: one for the completed checkpoint and the other
for the ongoing one. When a failure occurs, the root agent
notifies all alive agents to serialize the latest complete check-
points with torch.save(), allowing PyTorch to load the
saved checkpoints for failure recovery with torch.load().
Setups.We conduct all experiments on AWS EC2 platform.
Unless otherwise specified, we use 16 p4d.24xlarge instances
for evaluations. Each instance has 1152GB CPU memory and
it has 8 NVIDIA A100 (40GB) GPUs, which are intercon-
nected via NVSwitch. p4d.24xlarge instances are connected
through a 400Gbps elastic fabric adaptor (EFA) network. We
adopt FSx [7] as the remote persistent storage and the aggre-
gated bandwidth is 20Gbps. We also evaluate Gemini with
p3dn.24xlarge instances, which have 8 NVIDIA V100 (32GB)
GPUs and are connected to a 100Gbps EFA network. The
used software versions are CUDA-11.6, DeepSpeed-v0.7.3,
PyTorch-1.13, nccl-v2.14.3, and etcd-v3.5.
Workloads. We evaluate Gemini with popular and repre-
sentative large deep learning models, including GPT-2 [61],
BERT [27], and RoBERTa [43]. We vary the number of layers,
hidden sizes, and intermediate sizes in these models [62, 87].
Table 2 summarizes the detailed model configurations. We
use the sequence length 512 and the vocabulary size 50265 for
the evaluation. We set the micro-batch size to 8 with mixed-
precision and we enable the activation recomputation [39,
50] in the evaluation. The optimizer used is Adam [38]. The
training dataset is Wikipedia-en corpus [46].
Baselines.We adopt two baselines, Strawman and HighFreq,
for the evaluations. Strawman uses the checkpoint frequency
following the setup in training BLOOM [3] and it checkpoints
model states every three hours. HighFreq aims to fully satu-
rate the bandwidth capacity of the remote persistent storage
and it represents the best we can do with remote storage-
based solutions. HighFreq first profiles both the checkpoint
time 𝑡𝑐𝑘𝑝𝑡 and the iteration time 𝑇𝑖𝑡𝑒𝑟 ; it then checkpoints

373

Figure 7. The iteration time of three
large models without checkpoints and
with Gemini.

Figure 8. The network idle time of
three large models without checkpoints
and with Gemini.

Figure 9. The probability that Gemini
can recover failures from checkpoints
stored in CPU memory.

the model states every ⌈𝑡𝑐𝑘𝑝𝑡/𝑇𝑖𝑡𝑒𝑟 ⌉ iterations. Both baselines
store the checkpoints in the remote persistent storage, while
the difference is the checkpoint frequency. Note that Gemini
also checkpoints to the remote persistent storage every three
hours in addition to checkpointing to CPU memory.

7.2 Training Efficiency
In this subsection, we evaluate Gemini on both p4d.24xlarge
and p3dn.24xlarge instances. We first use 16 p4d.24xlarge
instances to demonstrate the performance advantages of
Gemini over the baselines on large-scale model training. The
largest model size we can train is 100B given the machine
scale and the GPUmemory size. Further increasing themodel
size causes GPU out-of-memory errors.
Training time.We examinedGemini’s impacts on the train-
ing throughput by benchmarking GPT-2 100B, RoBERTa
100B, and BERT 100B. We carried out 50 training iterations
with Gemini, which performed checkpointing for every iter-
ation, and an equal number of iterations without checkpoint-
ing using vanilla DeepSpeed. Figure 7 shows the iteration
times for both settings across the three models. Our can find
that Gemini does not affect the training iteration times. This
is because the network idle time during training is adequate
to accommodate the checkpoint traffic. Figure 8 confirms that
there is still available network idle time even after Gemini
inserts all the checkpoint traffic. It indicates that Gemini can
achieve per iteration checkpointing without incurring extra
overhead to the training throughput thanks to the traffic
interleaving algorithm.
Since Gemini has negligible overhead for all the large

models we evaluated, we use the GPT-2 100B model as the
representative in the following part for brevity. RoBERTa and
BERT have similar results and will not affect our conclusions.
Wasted time.We next evaluate the wasted time when a fail-
ure occurs. We first analyze the probability that Gemini can
recover failures from CPU memory. Given the checkpoint
replica number𝑚, the probability is determined by the num-
ber of instances 𝑘 that need to be replaced simultaneously
(failures occurred on those instances). When 𝑘 < 𝑚, Gemini
can always recover training fromCPUmemory.When𝑘 ≥ 𝑚,

we can calculate the probability according to Corollary 1. Fig-
ure 9 plots the probability that Gemini can recover failures
from CPU memory under different settings. The probability
increases with the number of instances 𝑁 . Suppose there
are two checkpoint replicas, i.e.,𝑚 = 2. When 𝑁 = 16 and
𝑘 = 2, Gemini has a probability of 93.3%; when 𝑘 = 3, it
still has a probability of 80.0%. We also consider the ring
strategy, in which instance 𝑖 stores its model states in itself
and instance (𝑖 + 1) mod 𝑁 . When 𝑁 = 16 and 𝑘 = 3, Ring’s
probability is 25.0% lower than that of Gemini. According
to OPT-175B [85] observation, there are 1.5% instances that
fail every day. Even for a thousand-scale training cluster, the
possibility of two instances having failures at the same time
is very limited. Therefore, Gemini with𝑚 = 2 can recover
failures from CPU memory for most cases.
We next calculate the average wasted time based on the

measured iteration time, checkpoint time, and retrieval time
according to Expression (1). Figure 10 shows the average
wasted time for training of GPT-2 100B on 16 p4d.24xlarge
instances with different numbers of replaced instances. The
average wasted time of both Strawman and HighFreq is
deterministic because the checkpoints are always retrieved
from the remote persistent storage when failures occur. In
contrast, the average wasted time of Gemini varies. When
there is no instance replaced, e.g., due to software failures,
the checkpoints are already at the local CPU memory. The
average wasted time in this case is 1.5× the iteration time
(1.5𝑇𝑖𝑡𝑒𝑟). When there is only one instance replaced or two
instances are replaced but training can be recovered from the
CPU memory, the extra overhead for failure recovery is to
retrieve checkpoints from other instances and the retrieval
time is less than three seconds. In these cases, Gemini can
reduce the average wasted time by more than 13× compared
to HighFreq. However, when two instances are replaced
and training cannot be recovered from the CPU memory, of
which the possibility is 6.7% with 16 instances according to
Figure 9, Gemini degrades to Strawman.
Checkpoint time. To showcase the advantage of Gemini
in terms of checkpoint time, Figure 11 displays the check-
point time reduction of Gemini over the baselines under

374

Figure 10. The average wasted time of
GPT-2 100B with different numbers of
replaced instances.

Figure 11. The checkpoint time reduc-
tion ofGemini over the baselines under
different network bandwidth.

Figure 12. Gemini achieves a much
higher checkpoint frequency than the
two baselines.

(a) The iteration time. (b) The network idle time.

Figure 13. Gemini is generalized to p3dn.24xlarge instances
and other models.

different network bandwidths and different numbers of in-
stances. Both baselines, Strawman and HighFreq, have the
same checkpoint time and it stays almost the same as the
number of machines increases from 4 to 16 because the ag-
gregated bandwidth of the remote persistent storage is fixed.
In contrast, Gemini’s checkpoint time reduces with an in-
crease in the number of instances in our testbed because
it utilizes the aggregated network bandwidth among GPU
machines to write checkpoints to the CPU memory. The
checkpoint time reduction also increases with the network
bandwidth connecting GPU instances. For example, with 16
p4d.24xlarge instances, the reduction is 65× with a 100Gbps
network, and it increases to more than 250× with a 400Gbps
network. It is very challenging for remote persistent storage
to achieve comparable performance as Gemini. To match the
checkpoint time of Gemini in our scenario, which involves
16 instances, persistent storage would need to achieve an
aggregated bandwidth of 6.4Tbps theoretically.
Checkpoint frequency. Gemini checkpoints model states
to CPU memory for every iteration. The iteration time of
GPT-2 100Bwith 16 p4d.24xlarge is 62 seconds, but the check-
point time with Gemini is less than 3 seconds. As shown in
Figure 12, Gemini improves the checkpoint frequency over
HighFreq by 8× and over Strawman bymore than 170×. Note
that the checkpoint frequency of Gemini is bounded by the
iteration time and it can achieve an even higher frequency
with the computation advancement of accelerators.

Failure recovery in large model training

Failure

Failure detection
(15s)

Checkpoint
Retrieval

Training

ckpt 1

Iter 1 Iter 2 Iter 3 Iter 4 Iter 3

Checkpoint
serialization (162s)

ckpt 2 ckpt 3 ckpt 2
Restart warmup

(253s)

Iter 4

Figure 14. The overhead of failure recovery for GPT-2 100B
training with Gemini. A failure occurs during Iteration 4 and
one instance is replaced.

We then demonstrate that Gemini can also efficiently sup-
port other training models on p3dn.24xlarge instances. The
largest model size we can train with this hardware setting is
40B. Further increasing the model size causes GPU out-of-
memory errors in our testbed.
Model training on p3dn.24xlarge. Figure 13a illustrates
that Geminiminimally affects the training throughput using
16 p3dn.24xlarge instances across various model sizes (10B,
20B, and 40B) and model architectures (GPT-2, RoBERTa, and
BERT). The training efficiency aligns with the findings from
16 p4d.24xlarge instances. Figure 13b contrasts network idle
times during model training without checkpoints and with
Gemini, revealing that the network idle time is still sufficient
to accommodate the checkpoint traffic.

7.3 System Scalability
In this subsection, we first report the overheads incurred by
failures in Gemini and the baselines. We then use simulation
to demonstrate that Gemini is scalable to scenarios with
frequent failures and to support LLM trainingwith thousands
of instances.
Overheads incurred by failures. Besides the lost training
progress, the checkpoint time, and the retrieval time, there
are other overheads in Gemini to recover training from a
failure. We train GPT-2 100B on 16 p4d.24xlarge instances
and the training process is illustrated in Figure 14. Gemini
checkpoints the model states to the CPU memory for every
iteration. An instance failure is triggered during Iteration 4
and it takes 15 seconds for the root agent to detect this failure.

375

(a) Different failure rates. (b) Different instance numbers.

Figure 15. The scalability of Gemini under simulation.

The root agent then notifies all alive instances to serialize the
checkpoints stored in CPU memory with torch.save(). We
observe that this operation is time-consuming and it takes
162 seconds to finish the serialization of two checkpoint
replicas, one is from local and the other is from another
instance. We also measure the waiting time to successfully
reserve a new p4d.24xlarge instance with ASG to estimate
the extra instance-replacing overhead in case of hardware
failures, which is around 4-7 minutes. Another noticeable
overhead is the restart warmup time and it takes more than
four minutes before the training can proceed from Iteration
3. To sum up, in our testbed, the total overhead resulting
from a failure that can be recovered from CPU memory is
around 7 minutes for software failures and 12 minutes for
hardware failures. Note that the instance-replacing overhead
for hardware failures can be greatly reduced by standby
machines.

Although the two baselines have no checkpoint serializa-
tion overheadwhen a failure occurs, they have such overhead
for every checkpoint to the remote persistent storage. Their
checkpoint communications to the remote persistent storage
are asynchronous to computation, but they need to serialize
the checkpoints with torch.save(), which blocks training.
HighFreq checkpoints the model states every nine iterations
and the incurred overhead for each checkpoint serialization
is around 81 seconds. Strawman also has this overhead, but
it is negligible due to the low frequency.
Based on the incurred overhead by one failure, we can

simulate the training performance of GPT-2 100B with dif-
ferent failure rates and different numbers of instances. We
consider software failures in the simulation because recover-
ing training from hardware failures has a similar overhead
as from software failures if standby machines are used.
Scaling to frequent failures. To evaluate the impact of fail-
ure rates, we conducted simulations of training performance
using 16 p4d.24xlarge instances and different checkpointing
solutions. We measured the training performance using a
metric called the effective training time ratio, which indicates
the percentage of productive training progress achieved in
a given period of time. Failures decrease this ratio due to
the overheads for failure recovery. The effective training
time ratios with different solutions are shown in Figure 15a.
We found that even with 8 failures per day, Gemini remains

Figure 16. The iteration time of GPT-2 40B with different
schemes for checkpointing to CPU memory. OOM is short
for out of memory.

highly efficient with a performance ratio close to the baseline
with no failures. However, the costly overhead of checkpoint
serialization, i.e. invoking torch.save(), in HighFreq sig-
nificantly hurts its performance. Even without any failures,
14.5% time is spent on checkpoint serialization. On the other
hand, Gemini only serializes checkpoints when failures oc-
cur. Strawman is worse than HighFreq due to its prohibitive
wasted time.
Scaling to more instances.We also simulate the training
performance with different numbers of instances involved
in training. Following the training report of OPT-175B [85],
we assume that 1.5% instances fail every day. The failure
frequency increases with the number of instances. Figure 15b
shows that with 1000 instances, the effective training time
ratio of Gemini is still around 91%, which is 54% higher
than HighFreq. Training with Strawman for failure recovery
can hardly proceed because of the frequent failures and the
prohibitive wasted time.

7.4 Effectiveness of Traffic Interleaving
In this subsection, we evaluate the effectiveness of Gemini’s
traffic interleaving algorithm. To understand the performance
contributions of its two approaches, we report the iteration
time of GPT-2 40B on 16 p3dn.24xlarge instances with the
following schemes for checkpointing to CPU memory.
• Baseline. It is the model training without checkpointing.
• Blocking. It checkpoints the model states to CPUmemory,
but the checkpoint traffic blocks training traffic at the
beginning of each iteration.
• Naïve interleave. It partitions checkpoint traffic for in-
terleaving, but each network idle timespan only has one
checkpoint partition.
• Interleave without pipeline. Each idle timespan can
have multiple partitions, but it only uses one GPU buffer
for checkpoint communications. The buffer size is 128MB.
• Gemini. It uses four small sub-buffers for pipelining check-
point communications and the size of each buffer is 32MB.
As shown in Figure 16, the iteration time with Blocking is

10.1% higher than the Baseline due to the extra checkpoint

376

time. Naïve interleave can cause GPU out-of-memory (OOM)
errors because it requires a large GPU memory buffer for
checkpoint communications. For example, the largest idle
time span profiled during training is 1.6s and the required
memory buffer size is more than 2GB on each GPU. Inter-
leave without pipeline can greatly reduce the required GPU
memory buffer size and avoid OOM error, but communica-
tions have to wait for GPU-to-CPU copy. The total network
idle time becomes insufficient to accommodate the check-
point traffic in this case and it worsens the iteration time by
3.5%. In contrast, the iteration time withGemini is almost the
same as the Baseline because it can fully utilize the network
idle time by pipelining checkpoint communications.

8 Related Work
Checkpointing in deep learning. Deep learning frame-
works, such as PyTorch [57], TensorFlow [18], andMXNet [22],
provide users with the interfaces to checkpoint model states
during training for failure recovery. Unlike Gemini, it is the
users’ responsibility to decide how to checkpoint, such as the
checkpoint frequency and storage location. To reduce check-
pointing overheads, DeepFreeze [51] performs asynchronous
checkpointing but stores checkpoints in remote persistent
storage. CheckFreq [48] dynamically adjusts the checkpoint-
ing frequency, but the remote storage bandwidth limits the
highest frequency. In contrast, Gemini stores checkpoints in
CPU memory, enabling much higher frequencies than Deep-
Freeze and CheckFreq. Check-N-Run [28] compresses check-
points with lossy schemes to reduce required storage, but this
may harm model accuracy and incur compression overheads.
Gemini stores the original checkpoints without impacting
accuracy or incurring compression overheads. Gandiva [82]
assumes healthy machines for checkpointing with an on-
demand checkpoint mechanism for job migration. Because
any machine involved in training can experience hardware
failures, Gandiva’s checkpoint mechanism cannot handle
this case in which checkpoints stored in failed machines will
get lost. Furthermore, its on-demand checkpointing cannot
tackle unexpected failures during large model training. In
contrast, Gemini aims to recover training from both unex-
pected software and hardware failures.
Checkpoint and data placement in distributed systems.
Diskless checkpointing [59] stores checkpoints in CPU mem-
ory. It requires processors to encode a checkpoint with parity
and their checkpoints can be recalculated when a proces-
sor fails. However, encoding and decoding a checkpoint of
large model training is extremely expensive. Instead, Gemini
employs redundant checkpoints for failure recovery. FTC-
Charm++ [88] stores two checkpoint copies on two proces-
sors for fault tolerance. However, it lacks an analysis of op-
timal checkpoint placements. Some distributed systems are
proposed for data placement in clouds [19, 25, 80]. For exam-
ple, CRUSH [80] distributes data replicas uniformly among

machines to maintain a statistically balanced utilization of
storage and bandwidth resources; Volley [19] develops au-
tomated techniques to place application data across data
centers. In contrast, Gemini groups machines involved in
training for checkpoint placement to maximize the proba-
bility of failure recovery from checkpoints stored in CPU
memory. Unlike traditional distributed systems for check-
point and data placement, a key challenge in Gemini is to
schedule checkpoint traffic to minimize interference with
training, which differentiates Gemini from existing work.
Communication scheduling in distributed training.
ByteScheduler [58], TicTac [32], and P3 [35] aim to improve
the performance of training by scheduling the communi-
cation orders of tensors. These works primarily focus on
accelerating training communication. They are orthogonal
and complementary to Gemini because Gemini focuses on
minimizing interference with training communication by
scheduling checkpoint communications.
Failure recovery with spot instances. Bamboo [73] uses
redundant computation to provide resilience and fast recov-
ery for training large DNN models on preemptible instances.
Gemini checkpoints to CPU memory and doesn’t require re-
dundant computation. Varuna [20] also enables large model
training on preemptible instances, but it requires users to
manage the checkpoints, such as the frequency and the stor-
age, for failure recovery. In contrast, Gemini offers transpar-
ent checkpointing for failure recovery, eliminating the need
for users to manage checkpoints.

9 Conclusion and Future Work
This paper presents Gemini, a distributed training system
that enables fast failure recovery for large model training.
By checkpointing to CPU memory, Gemini achieves high
checkpoint frequencies to minimize wasted time and incurs
no overhead on training throughput for large model training.
Experiments on GPU clusters show that Gemini achieves
more than 13× faster failure recovery compared to existing
solutions, without hurting the training throughput. While
the current implementation of Gemini is built upon ZeRO-3,
we believe the proposed design is applicable to other paral-
lelisms, such as pipeline parallelism [34, 49], tensor paral-
lelism [67], data parallelism [37, 66, 87], and a combination
of them [50, 89], which is part of our future work. In addition,
we plan to apply Gemini to the training system with other
accelerators such as AWS Trainium.

Acknowledgment
We would like to thank our shepherd Lidong Zhou and
the anonymous reviewers for providing valuable feedback.
Zhuang Wang and T. S. Eugene Ng are partially supported
by the NSF under CNS-2214272 and CNS-1815525.

377

References
[1] NVIDIA NCCL. https://developer.nvidia.com/NCCL, 2021.
[2] AWS Trainium. https://aws.amazon.com/machine-learning/trainium/,

2022.
[3] BLOOM Chronicles. https://github.com/bigscience-workshop/

bigscience/blob/master/train/tr11-176B-ml/chronicles.md, 2022.
[4] Auto Scaling in AWS. https://docs.aws.amazon.com/autoscaling/,

2023.
[5] Auto Scaling in Azure. https://learn.microsoft.com/en-us/azure/app-

service/manage-scale-up, 2023.
[6] Auto Scaling in Google Cloud. https://cloud.google.com/compute/

docs/autoscaler, 2023.
[7] AWS FSx. https://aws.amazon.com/fsx/, 2023.
[8] ChatGPT. https://openai.com/blog/chatgpt, 2023.
[9] etcd. https://etcd.io/, 2023.
[10] GPU instances in Google Cloud Platform. https://cloud.google.com/

compute/docs/gpus, 2023.
[11] ND40rs_v2 in Azure. https://learn.microsoft.com/en-us/azure/virtual-

machines/ndv2-series, 2023.
[12] ND96asr_v4 in Azure. https://learn.microsoft.com/en-us/azure/

virtual-machines/nda100-v4-series, 2023.
[13] NVIDIA DGX A100. https://www.nvidia.com/en-gb/data-center/dgx-

a100/, 2023.
[14] OPT-175B logbook. https://github.com/facebookresearch/metaseq/

tree/main/projects/OPT/chronicles, 2023.
[15] P3dn.24xlarge in AWS. https://aws.amazon.com/ec2/instance-types/

p3/, 2023.
[16] P4d.24xlarge in AWS. https://aws.amazon.com/ec2/instance-types/p4/,

2023.
[17] SageMaker. https://docs.aws.amazon.com/sagemaker/index.html,

2023.
[18] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasude-
van, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
Tensorflow: A system for large-scale machine learning. In USENIX

Symposium on Operating Systems Design and Implementation (OSDI),
pages 265–283, 2016.

[19] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec
Wolman, and Habinder Bhogan. Volley: Automated data placement
for geo-distributed cloud services. In NSDI, 2010.

[20] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ram-
jee, and Nipun Kwatra. Varuna: scalable, low-cost training of massive
deep learning models. In Proceedings of the Seventeenth European

Conference on Computer Systems, pages 472–487, 2022.
[21] Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Subramoni, and Dha-

baleswar K Panda. Optimized broadcast for deep learning workloads
on dense-GPU InfiniBand clusters: MPI or NCCL? In Proceedings of

the 25th European MPI Users’ Group Meeting, pages 1–9, 2018.
[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[23] Yu Chen, Zhenming Liu, Bin Ren, and Xin Jin. On efficient construc-
tions of checkpoints. In International Conference on Machine Learning,
pages 1627–1636. PMLR, 2020.

[24] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al. PaLM: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

[25] Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John
Ousterhout, and Mendel Rosenblum. Copysets: Reducing the fre-
quency of data loss in cloud storage. In 2013 USENIX Annual Technical

Conference (USENIX ATC 13), pages 37–48, 2013.
[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[28] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa
Mudigere, Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha
Smelyanskiy, and Murali Annavaram. Check-N-Run: a checkpointing
system for training deep learning recommendation models. In 19th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 22), pages 929–943, 2022.
[29] Robert Escriva, Bernard Wong, and Emin Gün Sirer. HyperDex: A

distributed, searchable key-value store. In Proceedings of the ACM

SIGCOMM 2012 conference on Applications, technologies, architectures,

and protocols for computer communication, pages 25–36, 2012.
[30] Roxana Geambasu, Amit A Levy, Tadayoshi Kohno, Arvind Krishna-

murthy, and Henry M Levy. Comet: An active distributed key-value
store. In OSDI, pages 323–336, 2010.

[31] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding
network failures in data centers: measurement, analysis, and impli-
cations. In Proceedings of the ACM SIGCOMM 2011 Conference, pages
350–361, 2011.

[32] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Campbell. Tic-
Tac: Accelerating distributed deep learningwith communication sched-
uling. Proceedings of Machine Learning and Systems, 1:418–430, 2019.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 770–778,
2016.

[34] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. GPipe: Efficient training of giant neural networks using
pipeline parallelism. Advances in neural information processing systems,
32, 2019.

[35] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova,
and Gennady Pekhimenko. Priority-based parameter propagation
for distributed DNN training. Proceedings of Machine Learning and

Systems, 1:132–145, 2019.
[36] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie

Qian, Wencong Xiao, and Fan Yang. Analysis of large-scale multi-
tenant GPU clusters for DNN training workloads. In USENIX Annual

Technical Conference, pages 947–960, 2019.
[37] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-

iong Guo. A unified architecture for accelerating distributed DNN
training in heterogeneous GPU/CPU clusters. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation,
pages 463–479, 2020.

[38] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[39] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee,
Michael Andersch, Mohammad Shoeybi, and Bryan Catanzaro. Re-
ducing activation recomputation in large transformer models. arXiv
preprint arXiv:2205.05198, 2022.

[40] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed

Computing Column) 32, 4 (Whole Number 121, December 2001), pages
51–58, 2001.

[41] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R
Tallent, and Kevin J Barker. Evaluating modern GPU interconnect:
PCIe, NVLink, NV-SLI, NVSwitch, and GPUDirect. IEEE Transactions

on Parallel and Distributed Systems, 31(1):94–110, 2019.
[42] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis,

Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania,
et al. Pytorch distributed: Experiences on accelerating data parallel

378

https://developer.nvidia.com/NCCL
https://aws.amazon.com/machine-learning/trainium/
https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md
https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md
https://docs.aws.amazon.com/autoscaling/
https://learn.microsoft.com/en-us/azure/app-service/manage-scale-up
https://learn.microsoft.com/en-us/azure/app-service/manage-scale-up
https://cloud.google.com/compute/docs/autoscaler
https://cloud.google.com/compute/docs/autoscaler
https://aws.amazon.com/fsx/
https://openai.com/blog/chatgpt
https://etcd.io/
https://cloud.google.com/compute/docs/gpus
https://cloud.google.com/compute/docs/gpus
https://learn.microsoft.com/en-us/azure/virtual-machines/ndv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/ndv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://learn.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://www.nvidia.com/en-gb/data-center/dgx-a100/
https://www.nvidia.com/en-gb/data-center/dgx-a100/
https://github.com/facebookresearch/metaseq/tree/main/projects/OPT/chronicles
https://github.com/facebookresearch/metaseq/tree/main/projects/OPT/chronicles
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p4/
https://docs.aws.amazon.com/sagemaker/index.html

training. Proceedings of the VLDB Endowment, 13(12).
[43] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi

Chen, Omer Levy,Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized BERT pretraining approach. arXiv

preprint arXiv:1907.11692, 2019.
[44] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram

Saraph, Bor-Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat, Bran-
don Lucia, et al. Understanding and improving failure tolerant training
for deep learning recommendation with partial recovery. Proceedings
of Machine Learning and Systems, 3:637–651, 2021.

[45] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos Fertakis, Andrei-
Octavian Brabete, and Peter Pietzuch. Kungfu: Making training in
distributed machine learning adaptive. In Proceedings of the 14th

USENIX Conference on Operating Systems Design and Implementation,
pages 937–954, 2020.

[46] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.
Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

[47] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learn-
ing. In International conference on machine learning, pages 1928–1937.
PMLR, 2016.

[48] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. Check-
freq: Frequent, fine-grained DNN checkpointing. In FAST, volume 21,
pages 203–216, 2021.

[49] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. PipeDream: Generalized pipeline parallelism for DNN train-
ing. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles, pages 1–15, 2019.
[50] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-

ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Efficient large-
scale language model training on GPU clusters using Megatron-LM.
In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 1–15, 2021.
[51] Bogdan Nicolae, Jiali Li, Justin M Wozniak, George Bosilca, Matthieu

Dorier, and Franck Cappello. Deepfreeze: Towards scalable asynchro-
nous checkpointing of deep learning models. In 2020 20th IEEE/ACM

International Symposium on Cluster, Cloud and Internet Computing

(CCGRID), pages 172–181. IEEE, 2020.
[52] Diego Ongaro and John Ousterhout. In search of an understandable

consensus algorithm. In 2014 USENIX Annual Technical Conference,
pages 305–319, 2014.

[53] OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
[54] Andrew Or, Haoyu Zhang, and Michael Freedman. Resource elasticity

in distributed deep learning. Proceedings of Machine Learning and

Systems, 2:400–411, 2020.
[55] George Ostrouchov, Don Maxwell, Rizwan A Ashraf, Christian En-

gelmann, Mallikarjun Shankar, and James H Rogers. GPU lifetimes
on Titan supercomputer: Survival analysis and reliability. In SC20:

International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 1–14. IEEE, 2020.
[56] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE

Transactions on knowledge and data engineering, 22(10):1345–1359,
2010.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An im-
perative style, high-performance deep learning library. In Advances in

Neural Information Processing Systems, pages 8024–8035, 2019.
[58] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang

Lan, Chuan Wu, and Chuanxiong Guo. A generic communication

scheduler for distributed DNN training acceleration. In Proceedings

of the 27th ACM Symposium on Operating Systems Principles, pages
16–29, 2019.

[59] James S Plank, Kai Li, and Michael A Puening. Diskless checkpointing.
IEEE Transactions on parallel and Distributed Systems, 9(10):972–986,
1998.

[60] Sreeram Potluri, Khaled Hamidouche, Akshay Venkatesh, Devendar
Bureddy, and Dhabaleswar K Panda. Efficient inter-node MPI commu-
nication using GPUDirect RDMA for InfiniBand clusters with NVIDIA
GPUs. In 2013 42nd International Conference on Parallel Processing,
pages 80–89. IEEE, 2013.

[61] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

[62] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
ZeRO: Memory optimizations toward training trillion parameter mod-
els. In SC20: International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–16. IEEE, 2020.
[63] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.

DeepSpeed: System optimizations enable training deep learning mod-
els with over 100 billion parameters. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Min-

ing, pages 3505–3506, 2020.
[64] Davide Rossetti and S Team. GPUDirect: Integrating the GPU with a

network interface. In GPU Technology Conference, page 185, 2015.
[65] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,

Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François
Yvon, Matthias Gallé, et al. BLOOM: A 176B-parameter open-access
multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

[66] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy dis-
tributed deep learning in tensorflow. arXiv preprint arXiv:1802.05799,
2018.

[67] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-LM: Training multi-
billion parameter language models using model parallelism. arXiv

preprint arXiv:1909.08053, 2019.
[68] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley,

Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye,
George Zerveas, Vijay Korthikanti, et al. Using DeepSpeed and Mega-
tron to train Megatron-Turing NLG 530B, a large-scale generative
language model. arXiv preprint arXiv:2201.11990, 2022.

[69] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2818–2826, 2016.
[70] Amir Taherin, Tirthak Patel, Giorgis Georgakoudis, Ignacio Laguna,

and Devesh Tiwari. Examining failures and repairs on supercomput-
ers with multi-GPU compute nodes. In 2021 51st Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN),
pages 305–313. IEEE, 2021.

[71] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu,
Karl Deng, Dongming Bi, and Dong Xiang. NetBouncer: Active device
and link failure localization in data center networks. In NSDI, pages
599–614, 2019.

[72] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization
of collective communication operations in MPICH. The International
Journal of High Performance Computing Applications, 19(1), 2005.

[73] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao
Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. Bamboo:
Making preemptible instances resilient for affordable training of large
DNNs. In NSDI, 2023.

[74] Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim Rogers, and
Don Maxwell. Reliability lessons learned from GPU experience with
the Titan supercomputer at oak ridge leadership computing facility.

379

In Proceedings of the international conference for high performance

computing, networking, storage and analysis, pages 1–12, 2015.
[75] Devesh Tiwari, Saurabh Gupta, James Rogers, Don Maxwell, Paolo

Rech, Sudharshan Vazhkudai, Daniel Oliveira, Dave Londo, Nathan
DeBardeleben, Philippe Navaux, et al. Understanding GPU errors
on large-scale HPC systems and the implications for system design
and operation. In 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA), pages 331–342. IEEE, 2015.
[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[77] Zhuang Wang, Haibin Lin, Yibo Zhu, and TS Eugene Ng. Hi-speed
DNN training with espresso: Unleashing the full potential of gradient
compression with near-optimal usage strategies. In Proceedings of

the Eighteenth European Conference on Computer Systems (EuroSys 23),
pages 867–882, 2023.

[78] Zhuang Wang, Xinyu Wu, Zhaozhuo Xu, and T. S. Eugene Ng. Cup-
cake: A compression scheduler for scalable communication-efficient
distributed training. Proceedings of Machine Learning and Systems, 5,
2023.

[79] Zhuang Wang, Zhaozhuo Xu, Xinyu Wu, Anshumali Shrivastava, and
T. S. Eugene Ng. DRAGONN: Distributed randomized approximate
gradients of neural networks. In International Conference on Machine

Learning, pages 23274–23291. PMLR, 2022.
[80] Sage A Weil, Scott A Brandt, Ethan L Miller, and Carlos Maltzahn.

CRUSH: Controlled, scalable, decentralized placement of replicated
data. In Proceedings of the 2006 ACM/IEEE conference on Supercomput-

ing, pages 122–es, 2006.
[81] Yidi Wu, Kaihao Ma, Xiao Yan, Zhi Liu, Zhenkun Cai, Yuzhen Huang,

James Cheng, Han Yuan, and Fan Yu. Elastic deep learning in multi-
tenant GPU clusters. IEEE Transactions on Parallel and Distributed

Systems, 33(1):144–158, 2021.
[82] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian

Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,

Hanyu Zhao, Quanlu Zhang, et al. Gandiva: Introspective cluster
scheduling for deep learning. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pages 595–610, 2018.
[83] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher

Aberger, and Christopher De Sa. PipeMare: Asynchronous pipeline
parallel DNN training. Proceedings of Machine Learning and Systems,
3:269–296, 2021.

[84] Shanshan Zhang, Ce Zhang, Zhao You, Rong Zheng, and Bo Xu. Asyn-
chronous stochastic gradient descent for DNN training. In 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing,
pages 6660–6663. IEEE, 2013.

[85] Susan Zhang, Stephen Roller, NamanGoyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria
Lin, et al. OPT: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[86] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora,
and Xin Jin. Is network the bottleneck of distributed training? In
Proceedings of the Workshop on Network Meets AI & ML, pages 8–13,
2020.

[87] Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu, George Karypis,
Trishul Chilimbi, Mu Li, and Xin Jin. MiCS: Near-linear scaling for
training gigantic model on public. Proceedings of the VLDB Endowment,
16(1):37–50, 2022.

[88] Gengbin Zheng, Lixia Shi, and Laxmikant V Kalé. FTC-Charm++: an
in-memory checkpoint-based fault tolerant runtime for Charm++ and
MPI. In 2004 ieee international conference on cluster computing (ieee

cat. no. 04EX935), pages 93–103. IEEE, 2004.
[89] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng

Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating
inter- and Intra-Operator parallelism for distributed deep learning.
In 16th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI 22), pages 559–578, Carlsbad, CA, July 2022. USENIX
Association.

380

Appendix for Gemini
Appendices have not been peer-reviewed.

A Proof of Theorem 1
Theorem 1. To address Problem 1 for checkpoint placement:

1. When 𝑁 is divisible by𝑚, the mixed placement strat-

egy (equals group placement strategy) is the optimal

placement strategy.

2. When 𝑁 is not divisible by 𝑚, the mixed placement

strategy minimizes the checkpoint communication time.

Its failure recovery probability from CPU memory is

near-optimal and the gap is bounded by (2𝑚 − 3)/
(
𝑁
𝑚

)
.

Proof. We first introduce two observations for checkpoint
placements. (1) The optimal strategy requires𝑚 machines to
store the𝑚 checkpoint copies of each machine to maximize
the recovery probability. If there are only𝑚′ machines to
store the 𝑚 copies, where 𝑚′ < 𝑚, it is equivalent to the
strategy with only 𝑚′ copies for recovering failures from
CPU memory. (2) The optimal strategy requires Machine 𝑖 to
store one copy of its own machine checkpoint to minimize
the checkpointing time. If so, each machine only needs to
send out𝑚 − 1 checkpoint copies. Otherwise, it has to send
out𝑚 copies which leads to a higher checkpointing time.
The checkpoint communication time with the Group strat-

egy is minimized because each machine sends out and re-
ceives 𝑚 − 1 checkpoint copies, no matter whether 𝑁 is
divisible by𝑚 or not. We next analyze the probability that
Gemini can recover failures from CPU memory.
Assume there are 𝑘 machines disconnected at the same

time. Gemini can certainly recover failures from CPU mem-
ory when 𝑘 < 𝑚 because there are𝑚 copies in𝑚 instances.
We mainly discuss the case that 𝑘 = 𝑚 here because the
failure rate with 𝑘 + 1 machines disconnected simultane-
ously is much lower than that with 𝑘 machines disconnected
simultaneously in practice.
For Machine 𝑖 , we denote the set of machines that store

its machine checkpoints as 𝑠𝑖 and it has
(
𝑁
𝑚

)
possible combina-

tions. Then a strategy can be expressed asS = {𝑠1, 𝑠2, . . . , 𝑠𝑁 }.
Because it is possible that 𝑠𝑖 = 𝑠 𝑗 when 𝑖 ≠ 𝑗 , we define
S′ = 𝑢𝑛𝑖𝑞𝑢𝑒 (S) and 𝑛 = |S′ |. The union of these 𝑛 sets in
S′ covers all the 𝑁 machines because each machine stores a
local checkpoint.
We denote the set of the𝑚 disconnected machines as 𝑠𝑑 .

Note that 𝑘 = 𝑚 in our analysis. Gemini cannot recover
training from CPU memory when 𝑠𝑑 is an element in S′. If
so, all the𝑚 copies of a machine checkpoint get lost and the
model checkpoints stored in CPU memory become incom-
plete and invalid for failure recovery. The probability that 𝑠𝑑
is an element in S′ is 𝑛/

(
𝑁
𝑚

)
, which linearly increases with 𝑛.

Probability upper bound. The upper bound of the probabil-
ity is 1− ⌈𝑁

𝑚
⌉/
(
𝑁
𝑚

)
because 𝑛 ≥ 𝑁 /𝑚. If ⌈𝑛 < 𝑁 /𝑚⌉, the size

of the union of the 𝑛 sets is at most 𝑛𝑚 < 𝑁 . It contradicts
the requirement that they must cover the 𝑁 machines.

When 𝑁 is divisible by𝑚. Group placement strategy can
achieve the upper bound. Machines in the same group have
the same set of machines to store their checkpoints. Because
there are 𝑁 /𝑚 groups, the number of unique sets in S is
𝑁 /𝑚. The probability is then S′ is ⌈𝑁

𝑚
⌉/
(
𝑁
𝑚

)
, which is the

lower bound. Therefore, we can conclude Group placement
strategy is optimal for Problem 1 when 𝑁 is divisible by𝑚.
When 𝑁 is not divisible by 𝑚. For the first ⌊𝑁 /𝑚⌋ − 1
groups, machines in the same group have the same set of ma-
chines to store their checkpoints. For the last group, each ma-
chine has a distinct set of machines to store its checkpoints
and there are 𝑁 −𝑚(⌊𝑁 /𝑚⌋ − 1) unique sets. Therefore, the
total number of unique sets in S is 𝑁 − (𝑚 − 1) (⌊𝑁 /𝑚⌋ − 1).
The gap between the upper bound and probability with the
mixed placement strategy is bounded by (2𝑚− 3)/

(
𝑁
𝑚

)
. Since

𝑁 ≫ 𝑚 and𝑚 is practically very small, the probability is
very close to the upper bound. □

B Proof of Corollary 1
Corollary 1. When 𝑁 is divisible by𝑚 and 𝑘 machines are

disconnected simultaneously, the probability that Gemini can

recover failures from CPU memory is
Pr(𝑁,𝑚, 𝑘) = 1, if 𝑘 < 𝑚

Pr(𝑁,𝑚, 𝑘) ≥ max{0, 1 − 𝑁 (𝑁 −𝑚𝑘−𝑚)
𝑚(𝑁𝑘)

}, if 𝑚 ≤ 𝑘 ≤ 𝑁
(4)

Proof. Gemini can certainly recover failures when 𝑘 < 𝑚

because there are available checkpoint replicas in at least
one of the machines. We then consider𝑚 ≤ 𝑘 ≤ 𝑁 .
With Algorithm 1 there are 𝑁 /𝑚 groups in G after the

group placement strategy. When 𝑘 machines fail at the same
time, if there exist𝑚 failed machines forming a group that is
an element of G, it indicates that the checkpoints stored in
CPUmemory become incomplete and training has to recover
from the remote persistent storage.
We first consider the case 𝑚 ≤ 𝑘 < 2𝑚. The number

of combinations to choose 𝑘 machines from 𝑁 machines is(
𝑁
𝑘

)
. The number of combinations causing incomplete check-

points in CPUmemory is 𝑁
𝑚

(
𝑁−𝑚
𝑘−𝑚

)
. Therefore, the probability

that Gemini can recover failures from CPU memory is

𝑃𝑟 (𝑁,𝑚, 𝑘) = 1 −
𝑁
(
𝑁−𝑚
𝑘−𝑚

)
𝑚
(
𝑁
𝑘

) , if m ≤ k < 2m. (5)

We then consider the case 𝑘 ≥ 2𝑚. When we use the same
method for 𝑚 ≤ 𝑘 < 2𝑚 to count the number of combi-
nations, some combinations are counted more than once
and the total number of combinations is less than 𝑁

𝑚

(
𝑁−𝑚
𝑘−𝑚

)
.

Therefore, the probability probability that Gemini can re-
cover failures from CPU memory is

Pr(𝑁,𝑚, 𝑘) > max{0, 1 −
𝑁
(
𝑁−𝑚
𝑘−𝑚

)
𝑚
(
𝑁
𝑘

) }, if 𝑘 ≥ 𝑚. (6)

We then have Corollary 1 by combining the two cases
together. □

381

	Abstract
	1 Introduction
	2 Motivation
	2.1 Failure Recovery in Model Training
	2.2 Limitations of Existing Solutions
	2.3 The Opportunity and Challenges

	3 System Architecture of Gemini
	3.1 Checkpoint Creation Module
	3.2 Failure Recovery Module

	4 Checkpoint Placement to CPU Memory
	5 Minimizing Training Interference
	5.1 Traffic Interleaving
	5.2 Difficulties and Approaches
	5.3 Checkpoint Partition Algorithm
	5.4 Online Profiling

	6 Resuming Training from Failures
	6.1 Failure Types
	6.2 Failure Recovery Mechanisms

	7 Evaluation
	7.1 Implementation and Experimental Methodology
	7.2 Training Efficiency
	7.3 System Scalability
	7.4 Effectiveness of Traffic Interleaving

	8 Related Work
	9 Conclusion and Future Work
	References
	A Proof of Theorem 1
	B Proof of Corollary 1

